
  

 

Refreshing uni- / bivariate 
statistics: Basic concepts

Sebastian Jentschke

UNIVERSITY OF BERGEN

The refresher lectures are split in two parts. A more 
theoretical one – which is this one – and a more 
practical one where I speak about the different uni- 
and bivariate statistical analyses.



  

 

Overview: 
• Units, variables and values
• Population and sample
• Level of measurement – Variable levels
• Organizing your data
• Descriptive statistics
• Research hypotheses vs. statistical hypotheses
• Conceptualizations of the p-value
• Statistical significance vs. effect size

UNIVERSITY OF BERGEN

SLIDE 2SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: CONCEPTS

This theoretical part introduces some basic concepts:
Units, variables and values introduces central ideas 

about what we measure and how.
Population and sample deals with that we (typically) 

want to make general claims (about a population) 
while measuring just a small group (the sample).

When measuring, our data can have different “quality 
levels” called level of measurement.

I will then give some hints about organizing and 
documenting your data.

Then, I will speak about descriptive statistics as a 
mean to characterize your sample and to assess 
whether the sample conforms to the requirements 
for carrying out certain statistical analyses.
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The next part deals with how we formulate good (i.e., 
precise and concise) research hypotheses and how 
these can be converted into statistical hypotheses 
(that we finally test).

Over time, there have been proposed different 
theoretical accounts about what the p-value means. 
I contrast two “classical” accounts – Fisher and 
Neyman – with a brief explanation on Bayesian 
statistics that became more widely used in recent 
years.

Finally, I will speak about that dilemma that statistical 
significance “scales” with sample size and the we 
might get significant differences that lack to be 
practically important. Effects size measures allow to 
describe and assess this aspect of practical 
importance.



  

 

Units, variables
and values



  

 

Units, variables and values
• units = units of observations

persons or objects of our research
• variables = measures collected from units

variables (can vary): more than one possible value
• values = expressions / stages of a variable

often numbers, sometimes categories
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Before we go into details, I would like to define and 
clarify some terms and concepts. One central 
concept is that of Units, denoting units of 
observations. Units are persons or objects the 
research is about. Having persons as units is 
maybe more intuitive: We prepare an experiment, 
and then invite persons to participate. Objects can 
be, e.g., organizations: We could, e.g., explore how 
satisfied you (the student within a certain course, all 
students at UiB) you are with having digital lectures 
in that semester.
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From these units, we collect variables (as the name 
indicates, variables is something that can vary, i.e., 
a phenomenon which can have more than one 
value → each variable has to have at least two 
values to be called variable). Examples for 
variables are: age, gender, level of education, 
revenue.
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Values are different expressions or stages of a 
variable. Often these expressions or stages take 
the form of numbers, but they can also be 
qualitative (different categories). Examples where 
variables are expressed as numbers are age, body 
height, reaction times. Examples where variables 
are categories are gender, treatment vs. control, 
car brands, level of education, or responses in a 
questionnaire. Especially the latter is a bit of a 
hybrid: There is an assumption that even though 
the individual questions are ordered ranks (1 = 
completely agree, 2..., 3..., 5 = Completely 
disagree) the sum of all questions is regarded as a 
continuous variable.
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I already said a little about the classification into 
continuous and categorical variables and how we 
can use that to decide which statistical analysis is 
appropriate in the introduction lecture. But, what I 
said there was a bit of a simplification as both 
categorical and continuous variables each combine 
to variable levels. I will speak about that a little later 
in the lecture in more detail.
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At the same time determine units, variables and 
values how we arrange our data in our spreadsheet 
(table). The units are typically arranged as lines, 
the variables as columns, and each unit (e.g., a 
specific participant) assumes a particular value for 
each variable (in the example, participant 2 
assumes the value 3.396 in the variable agreeable-
ness).



  

 

Population
and sample



  

 

Population and sample
• populations → samples → units
• aim: make statements about the

population (general principles)
• Law of large numbers: with many

trials the value in a sample
approaches the «true» value
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population

sample unit

First, I will say something about units, samples and 
populations. As said above, units are often persons, 
and when we conduct a scientific study we typically 
collect data from a sample, i.e., a group of persons. 
In principle, this also applies if the units are objects 
(e.g., organizations). In such case a sample would 
be several object. For the sake of simplicity it is 
maybe easier to keep with the idea of persons and 
samples as groups of persons (often denoted as 
participants) for now. These samples are part of a 
larger population.

What we would in most cases would like to do is to 
make statements about the population.



  

 

Population and sample
• populations → samples → units
• aim: make statements about the

population (general principles)
• Law of large numbers: with many

trials the value in a sample
approaches the «true» value

UNIVERSITY OF BERGEN

SLIDE 12SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: CONCEPTS

population

sample unit

A guiding principle is the Law of large numbers which 
states that the results obtained from a large number 
of trials should be close to the expected value and 
will tend to become closer the more trials are 
performed. For example, if we want to know 
something about the average height of females 
Norway, we will get an estimate that is closer to the 
“true” body height if our sample contains 40 
(instead of 20) females.



  

 

Population and sample
Types of statistics:
• descriptive statistics

→ characterize our sample
→ check assumptions

• inference statistics
→ draw conclusions for the population
→ sample has to be representative
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With these sample we carry out to “types” of 
statistics.

One is called “descriptive statistics”. Here we try to 
characterize our sample, e.g., with respect to 
central tendency (using mean, median, mode, etc.) 
and with respect to variation (using standard 
deviation, minimum and maximum, range, etc.). 
Descriptive statistics is also used to check 
assumptions that have to be fulfilled to carry out 
certain statistical analyses (e.g., are the data 
normally distributed).
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The other type of statistics is called “inference 
statistics”. Using analyses that fall within inference 
statistics, we want assess whether we can draw 
conclusions from the sample we collected to the 
population (the sample was drawn from). Typically 
we assess using inference statistical methods 
whether we can conclude (make the inference) that 
the same relation that we observed in the sample 
(e.g., a difference in means between two conditions 
in an experiment) also exists in the population.
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When selecting a sample, we need to have an 
overview over the target population. The sample 
has to include all characteristics about which the 
researcher wants to make claims on the basis of 
the experiment (e.g., if we want to draw 
conclusions about the whole population, we can’t 
have a sample only consisting of women). The 
sample has to be suitable to describe the entire 
population, it has to be representative. If not, there 
will be a problem to generalize the findings.

Typically, if we randomly choose participants within 
for sample, this sample likely will be representative 
for the population.



  

 

Population and sample
Representativeness → methods for sample selection
probabilistic:
• simple random sampling
• systematic sampling (e.g. every fifth)
• stratified sampling (e.g. sex, age groups)
• cluster sampling (e.g. geogr. regions) 
• quota sampling (quota per subgr., e.g. 200 F / 300 M, 45 – 60 yr)
non-probabilistic:
• accidental sampling (available participants; cafeteria, on the street)
• voluntary selection / self-selection (react to advert.; poster, e-mail)
• discretionary selection (researcher sel. accord. to expect. repres.)
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To ensure representativeness, everyone who is part 
of the population we are interested in must have a 
certain chance of being included in the sample.

The most common forms of selection are:
(1) When using Simple random sampling, all 

combinations of characteristics have the same 
probability of being drawn.

(2) Systematic sampling (or interval sampling) relies 
on arranging the study population according to 
some ordering scheme and then selecting 
elements at regular intervals (e.g., each fifth 
person).

(3) In Stratified sampling, the population of interest is 
divided into subgroups or strata (e.g., by gender, 
age, etc.) and a random selection is drawn within 
each stratum.
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(4) Cluster sampling selects groups that are internally 
heterogeneous yet (relatively) homogeneous within 
the group (e.g., from certain geographical regions, 
age groups, etc.).

(5) Quota sampling segments the population into 
mutually exclusive sub-groups, then participants 
from each segment are selected based on a 
specified proportion (e.g., 200 females and 300 
males between the age of 45 and 60).
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In addition, there is a couple of non-probabilistic 
sampling approaches (i.e., we used methods that 
are not based on a random selection). Yet, these 
methods aim to establish representativeness of the 
sample:

(a) Accidental sampling describes that the sample is 
being drawn from that part of the population which 
is close to hand (recruiting  participants in the 
cafeteria or on the street).

(b) Voluntary selection / self-selection is where the 
participants decide whether they want to participate 
in the study (e.g. by reacting to an advertisement 
via poster or e-mail).

(c) For discretionary selection, the researcher selects 
the units according to how typical he / she assumes 
they are for the population.



  

 

Population and sample
• statistics: characteristics of measures in the 

sample vs. 
parameters: «true» values in the population

• Central limit theorem: statistics in the sample 
approach with increasing sample size the «true» 
value in the population
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Finally, there is a distinction between characteristics 
we measure in our sample (these are called 
“statistics”) and the true value of these 
characteristics in the population (called 
“parameters” and typically denoted with greek 
letters). For example, the statistics for body height 
in a sample would be denoted as x or M for the 
mean and s for the the standard deviation whereas 
the parameters in the population would be denoted 
as µ for the mean and σ for the standard deviation.
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According to the Central limit theorem approach the 
data collected from a sample with increasing 
sample size a normal distribution. A more detailed 
description what this entails is given when 
explaining the z-test in the second part of this 
lecture.
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If you want a more comprehensive introduction into 
samples and populations, you can read chapter 8 
in the jamovi-book (Navarro & Foxcroft, 2019). Or 
for a basic introduction, you can watch this video 
https://www.youtube.com/watch?v=eIZD1BFfw8E
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Levels of measurement
• nominal level: values mutually exclusive

examples: gender, residence, nationality, etc.
• ordinal level: + can be ranked

examples: education level, level of income / SES
• interval level: + equal intervals

examples: pH-scale, standard scores, celsius
• ratio level: + absolute zero

examples: age, body height, body weight
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We categorize variables according to which range of 
values they can contain into four different levels. 
These levels are called: (1) Nominal level, (2) 
Ordinal level, (3) Interval level, and (4) Ratio level. 
What level of measurement a variable has is 
decisive for what kind of statistical analyses we can 
conduct using this variable. The higher the level, 
the more different tests can be conducted.
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At the nominal level variable values can classified 
into mutually exclusive categories. We can only say 
that values are equal and unequal with a category 
(i.e., we can not express them as ranks, or whether 
one category is better, higher or more valuable than 
another). Examples are gender, municipality of 
residence, nationality, political affiliation, etc.
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For variables at ordinal level, categories can be 
ranked (in addition to being mutually exclusive). 
When comparing two units it makes sense to 
decide which one has the highest or lowest value of 
the variable. However, we can say nothing about 
the distance between the values. Examples are 
education level, level of income or socio-economic 
status, or responses in questionnaires (e.g., the 
categories between “completely disagree” to 
“completely agree” or “not at all” to “very much”).
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For variables at interval level, it is possible to 
measure the distance between the categories (in 
addition to that the categories can be ranked). We 
are therefore able to say, how much to values on 
that scale are apart from each other. Yet, we can't 
say anything about the relationship between the 
units as the scale does not have an absolute zero. 
Examples are the pH-scale, standard scores (e.g., 
in intelligence or personality tests) or temperature. 
Temperature does not have an absolute zero, but 
given that it is “normed” to have 0 (where water is 
freezing) and 100 (where water is boiling), we can 
at least say that going from 10 to 20 brings us an 
equally large distance from freezing to boiling as 
going from 20 to 30. Likewise, in a intelligence test, 
a test score of 85 tells us that this person is about 
one standard deviation below the mean (for that 
skill) as a test score of 115 tells us that the person 
is about one standard deviation above the mean.
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Finally, variables at ratio level have an absolute zero 
(in addition to also having equal intervals). This 
allows to compare the relationships between units. 
Examples are age, body height, body weight, etc. If 
one puts one person with 100 kg on a scale and 
two persons with 50 kg each on the other side, the 
scale would be in balance.
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Please note that “measurement level” is called 
“measurement type” in jamovi and doesn’t contain 
a category for ratio level (since we can use 
parametric methods with either interval or ratio 
scale level). SPSS actually does the same (and 
here “measurement level” is called “Measure”). In 
addition, jamovi has three different categories 
within “Data type”: text, integer (without decimals), 
and decimal. These determine how the variables 
are stored (integer need less file space than 
decimals).

Measurement levels are introduced in chapter 2.2 of 
the jamovi-book (Navarro & Foxcroft, 2019). You 
can also watch this video: 
https://www.youtube.com/watch?v=LPHYPXBK_ks
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Organizing your data
• organize your data!

directory structure – main directory
→ subfolders with participants OR
→ subfolders with measures (e.g., tests, experim.)
→ subfolder where you store (and keep) analyses
     (syntax, outputs, etc.; add a date yyyy-mm-dd)

• document your data!
README file: general introduction, variable information, 
directory structure

➢ data sharing (possible requirement for publication)
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Typically, when you start analysing a data set, the 
very first stage is to familiarize yourself with it. A 
word of advice: Each minute that you invest in 
documenting what you did when collecting the data 
will save you a lot of work later on and minimize 
that you make mistakes in your analyses (this 
happens quite often because you, e.g., can’t 
remember what exactly you measured with a 
certain variable which may lead to wrong 
conclusions).

If you think of your M.Sc. thesis you typically will have 
one main directory that contains your summary files 
(i.e., files that contain the the variables you 
measured from all participants). Often you will have 
subfolder: Either one subfolder for each participant 
or one subfolder for each measure (e.g., a 
questionnaire, experimental data, etc.). Finally, 
create a subfolder where you keep syntax- and 
output-files of analyses you carried out.
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What I recommend you to do is to create a README 
file in the main directory of where your data are 
stored. What you should (at least) include in your 
README file is:

(1) a general introduction about the study: aim 
(possibly hypotheses), which main instruments 
where used (e.g., which questionnaires, which 
experimental paradigms, etc.), general comments 
(e.g., where there participants that were excluded 
and why, etc.)

(2) information about the variables contained: name, 
a verbal description what the variable contains (and 
possibly how it was measured), variable levels (if it 
is a categorical variable) and notes / comments 
(applying to that variable, if necessary)

(3) information about the directory structure: where 
are the raw data stored, how where the raw data 
converted into the main file (where you typically 
have summary variables)
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Another reason is that data sharing becomes a policy 
with more and more journals and your data will only 
be useful to others if they can understand what is 
contained and how they are organized.

Recently, this became more important in connection 
with the demand for replicable and reproducible 
research where you often have to publish your data 
together with your manuscript. Your data can only 
be useful to others if they are properly documented.

If you got a dataset from another person, you can 
hope that this person was making such an effort. 
Otherwise, it will take you a bit of time to answer 
the following questions that you are required to 
understand (e.g., for choosing appropriate 
statistical analyses): What is the data comprised 
of? How many observations? Which types and 
measurement levels have the variables? What are 
the values within the variables?
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Believe me, even though that might sound tedious 
and boring, it is worth every second you invest. A 
very typical case is that you prepare a manuscript. 
A rough estimate for the time between working on 
the manuscript and having to do revisions after 
comments from reviewers is between 6 and 12 
months. How well do you believe do you know how 
your data are organized after such a period?
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Descriptive statistics
• summarize and visualize your data:

central tendency: mean, median, mode
dispersion / variation: std. dev., min. - max.
visualization

• assure that assumptions (e.g., Normality) are met:
extreme values / outliers?
assumption tests
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Descriptive statistics also called Explorative data 
analysis serves to summarize and visualize your 
data. What we typically do with the sample is to 
describe characteristics of the variables we 
measured. This description typically encompasses 
information about the central tendency as well as 
an indicator of variation:

If the data are on an interval scale level we typically 
use the mean (to describe the central tendency) 
and the standard deviation (as a measure of 
variation). If you ran an study with several 
conditions you will likely report at least the mean 
and standard deviation (or variance) for each 
condition.
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If your data are on an ordinal scale level, we 
typically use the median (to describe the central 
tendency) and range or minimum and maximum 
(as a measure of variation).

If the data are on an nominal scale level, we use the 
mode (the value that occurs most often) as the 
measure of central tendency. The measure of 
variation could be a table with the frequency of 
occurrences.

If your data are on an interval scale level but not 
normally distributed, you may decide to use non-
parametric statistics. In such case, you decide to 
treat these data on an ordinal scale level even 
though the level on which they were measured was 
an interval scale.
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In addition or alternatively to reporting these values, 
you typically visualize your data: For an 
experimental study with several conditions you will 
likely use a bar graph showing the mean of these 
conditions in comparison. If your study explored 
correlations, you might want to visualize the relation 
between these to variables using a scatter plot 
(please note that you need to install the module 
“scatr” to produce those plots).
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Finally, descriptive statistics is typically also used to 
assess whether the prerequisites for certain sta-
tistical analyses are met. For example, most so-
called parametric statistics (which is the majority of 
tests we are using, including, e.g., t-test, ANOVA, 
correlation, regression, etc.) are based on the 
assumption that the distribution of values in your 
variables follows a normal distribution. You can use 
Descriptive statistics to check this. As you have 
seen in the part on population and samples, a 
sample might not perfectly represent the population 
it is coming from. That is, the way the data in the 
sample are distributed might not follow a normal 
distribution. One condition, where the sample data 
deviate from a normal distribution is if the sample 
contains extreme values. These are denoted as 
outliers. The check for these outliers and to visually 
assess whether the data are normally distributed, 
we use Descriptive statistics.
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Therefore, it is typically the first step before you 
conduct further parametric statistical analyses (like 
correlation, t-test, regression or ANOVA).

A second step in checking prerequisites are the so-
called assumption tests. You will find a dropdown-
box called “Assumption Tests” for (more or less) all 
analyses implemented in jamovi. This second step 
will be described when covering the individual tests 
in the lecture.
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A very convenient way of assessing whether your 
data are normally distributed is visually. If we look 
at the figures shown on this slide, we can see three 
conditions each with a histogram and a Q-Q-plot.

As a brief note: Here a histogram is used. I have a 
preference for the combination of box and violin 
plot (and will use that in the demonstration later).

My reason for having that preference is that basically, 
the violin plot gives you the same information as 
the histogram (even though it’s turned by 90° and 
smoothed). In combination with the box plot, you 
can at one glance assess to what degree the data 
look normally distributed (from the violin plots) plus 
in addition see whether there are any outliers (from 
the box plots).
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The first condition shows how the data look like if 
they (generally) follow a normal distribution. We 
observe the “normal-distribution-like”-shape of the 
histogram and that most dots in the Q-Q-plot fall 
close to the main diagonal.
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If the data are skewed (in that case, they are 
positively skewed), the have a longer tail on one 
side than on the other. In the histogram we see that 
the “peak” of the distribution (called mode: the 
value or that bin within the histogram that appears 
most frequently) is shifted from the middle to one 
side (i.e., the distribution is not symmetrically as it 
would be if it followed a normal distribution). In the 
Q-Q-plot, the vertical axis (showing the empirical 
distribution in our dataset) starts with 0 and goes 
only to 2. That mean that, if we compare that to a 
typical normal distribution, it is like cut in the 
middle.
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If the data have heavy tails, extreme values are 
overrepresented. Whereas in a histogram showing 
a “typical” standard deviation, most values (~95%) 
fall within plus / minus two standard deviations, 
here the scale goes from -6 to 8. The same can be 
seen on the vertical axis (showing the empirical 
distribution). If we look at the Q-Q-plot, the slope in 
the middle part appears less steep (which is a 
consequence of the vertical axis having a value 
range of -6 to 6), whereas there is a lot of additional 
dots on the far ends.



  

 

Descriptive statistics
●  → ☰ Open → Data Library → Anderson’s Iris Data
● Exploration → Descriptives

Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
→ «Variables»
Species → «Split by»
tick: Shapiro-Wilk, Box plot, Violin, Q-Q
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But let’s come back to how you can use Descriptive 
statistics in jamovi in order to describe your data 
and to assess whether your data are suited for your 
analyses or whether you have to “clean” your data.

We will use the Andersen’s Iris-dataset. You can 
open this dataset by clicking on the  (top-left ☰
corner in jamovi) → “Open” → “Data library” → 
“Anderson’s Iris data”. The dataset contains four 
columns with continuous variables (Sepal.Length, 
Sepal.Width, Petal.Length, Petal.Width) and one 
categorical variable (Species).

We assign the continuous variables to “Variables” 
and Species to “Split by”. We open the drop-down-
box “Statistics” (click the “>”-sign) and tick “Sha-
piro-Wilk” (under “Normality”). Then we open the 
drop-down box “Plots” and tick “Box plot” and 
“Violin” (under “Box Plot”), and “Q-Q” (at “Q-Q-
plots”).
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We get a very comprehensive table that we can have 
a look at while the figures get prepared. We first 
take a look at the very bottom where we find the 
“Shapiro-Wilk p”. A low p-value indicates a 
deviation from a normal distribution. As a general 
rule, if p > 0.1 that typically is fine, if p is between 
0.05 and 0.10 there is reason for concern, if p < 
0.05 we should really consider whether we need to 
use that variable. In any case, for p-values smaller 
than 0.10, we should check whether there are 
outliers that might explain that variation. When 
looking at the table again, we see that the p-values 
for the first and the second columns (Sepal.Length 
and Sepal.Width) seem fine, in the third column 
(Petal.Length) the values for the Species “setosa” 
raise a bit concern, and in the fourth column 
(Petal.Width) more or less all values.
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Let’s now turn to the figures. Please note, that only 
the most important figure is included in the slide, so 
you either have to conduct the analysis yourself or 
open AndersenIris_Descriptives.html on MittUiB → 
Files→ Data sets → Examples4 jamovi.

For the Box- / Violin-Plot-combination, we check 
whether there are any outliers (black dots), how 
many there are and how extreme. Possibly, we 
have to decide to remove cases from our dataset, if 
that case contains an extreme value. Generally, this 
looks fine for that data set. There are some outliers 
but they appear not very extreme. The second thing 
we look at (still in the Box- / Violin-Plot-
combination) is whether the “Violin”-part looks 
approximately like a normal distribution curve 
(turned 90°). There is neither that raises red flags.
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Now, we turn to the Q-Q-plots. What the do is 
comparing the empirical distribution of values (i.e., 
the actual values contained in our variables) with 
what would be expected theoretically (i.e., what we 
would expect based on a normal distribution). The 
rationale is as follows: When we take a sample and 
expect that the values are normally distributed, we 
expect that the majority of the values falls 
(relatively) close to the mean and extreme values 
are more uncommon. If we had an empirical 
distribution that were perfectly in accordance with a 
normal distribution, all values would fall on the 
black line. The more they deviate from the black 
line (especially in the bottom-left and the top-right 
corner) the more likely with have a skewed 
distribution, extreme outliers that prevent us from 
using that variable.
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The Q-Q-plot for the first two variables look fine, for 
the third variable we observe a little strange plot for 
the species setosa (where we had concerns about 
the normal distribution) and for the fourth variable 
we observe a very similar pattern (lines of dots like 
as if the the data were layered). We got an 
explanation for why this happened from looking at 
the means of these four occasions where we had 
concerns about Normality (species “setosa” for 
Petal.Length,  all species for Petal.Width). The 
means here are all relatively small, which indicates 
that in a lot of cases the values for Petal.Length 
and Petal.Width don’t vary very much since they 
are so small. The values are therefore “behaving” 
more like as if they belonged into categories than 
as if they were continuous. That is the reason for 
why they are not normally distributed. If we had the 
orginal data, we could use more decimals so that  
we get a more fine-grained set of values.
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In the jamovi-book (Navarro & Foxcroft, 2019), you 
can read chapter 4 for a more comprehensive 
introduction into descriptive statistics and chapter 
11.8 for a more in-depth discussion of how to 
assess normality visually.

If you would like a demonstration from a different 
angle, there are some of Barton Poulson’s videos 
that you can watch: go to https://datalab.cc/jamovi/, 
click on the Hamburger button (three vertical lines; 
top-right in the video). Start from video 17 
“Exploration: Chapter overview” and watch the 
following videos up to video 24 “Bar plots”).
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Research vs. statistical hypotheses
research hypothesis = precise and concise form
of a research question (like: if X then Y)
examples:
• “Listening to music reduces your ability to pay attention to 

other things.” (claim about the relation btw. meaningful 
concepts)

• “Intelligence is related to personality.” (correlational, not 
causal; little too broad – choose a dimension)

• “Intelligence is speed of information processing.”
(invalid, ontological claim + confoundation)
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When we start a scientific project we typically begin 
with a research question, i.e., a question that we 
would like to answer in the experiment. Often, we 
begin with a very general formulation of this 
question. From there, we have to work to make this 
question more concise. Once you arrived at such a 
concise and precise description overall scientific 
goal (typically a theoretical description of some 
predictor or cause and its influence on the 
expected outcome), you go further to a process 
called operationalization. This process involves that 
you consider how you could measure what is at the 
core of the research question (i.e., the assumed 
causes / predictors and the expected outcome). 

That means that this transformation process involves 
taking a general question or a thought in everyday 
language into a plan or a design of an experiment 
(i.e., a way of assessing and measuring what is 
behind that question).
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At the core of the operationalization is not only how 
we implement a study and how we measure 
predictors and outcome but also two types of 
hypotheses: One describes the aim of your 
research in rather everyday language and is called 
research hypothesis. Examples for such research 
hypotheses are:

(1) “Listening to music reduces your ability to pay 
attention to other things.”
This is a claim about the causal relationship 
between two psychologically meaningful concepts. 
When operationalizing this hypothesis in an 
experimental design, one group would get a 
treatment (music; M) whereas the other doesn’t (no 
music; NM). Then a certain outcome is measured. 
Given that the research question is about attention 
we design a task assessing that (e.g., the capability 
of paying attention and detect or recognizing 
objects that briefly flash in your field of view).
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(2) “Intelligence is related to personality.”
This is a weaker relational claim about two 
psychological constructs (intelligence and 
personality). The reason is that this question is 
correlational not causal. Whereas we in the first 
example manipulated a variable (music vs. no 
music) and AFTERWARDS measured an outcome 
(attention), is for this research hypothesis not clear 
whether higher intelligence is the cause or the 
consequence of personality. There is another 
weakness with this hypothesis, “personality” is a 
very comprehensive construct, and therefore we 
should better formulate: Intelligence is related to 
(e.g.) openness to experience (i.e., a certain 
personality dimension).
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(3) “Intelligence is speed of information processing.”
This statement has two issues (and I am therefore 
reluctant to call it hypothesis): First, it ontological 
claim about the fundamental character of 
intelligence (what is intelligence). Second, within 
most intelligence constructs, “processing speed” is 
an aspect or a factor contributing to intelligence as 
a whole. We can therefore say that these variables 
are confounded and can’t be measured 
independent of each other.



  

 

Research vs. statistical hypotheses
some common problems with research hypotheses:
• “Love is a battlefield.” (to vague)
• “The first rule of tautology club is the first rule of 

tautology club.” (can’t be falsified)
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In addition to these three examples illustrating the 
basic distinction between causal and 
(cor-)relational hypotheses (and research designs), 
there are some common problems or mistake we 
may make when formulating research hypotheses:

    • the hypothesis can be to vague: “Love is a 
battlefield.”

One central problem when hypotheses are not 
precise and concise is that we have difficulties to 
convert them into a research design, i.e., to 
“operationalize” them.

The next hypothesis is formulated in a way such that 
it can not be falsified: “The first rule of tautology 
club is the first rule of tautology club.”
A statement that is used as a research hypothesis 
needs two possible outcomes, i.e. there must be a 
possibility that the claim is correct or wrong.



  

 

Research vs. statistical hypotheses
• research hypotheses = scientific claims →

statistical hypotheses = claims about data
• “Listening to music reduces your ability to pay 

attention to other things.” →
“The group who listens to music will on average 
have a lower score in a visual attention test.”
(H1: µM < µNM ↔ H0: µM ≥ µNM)
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From research hypotheses, which are scientific 
claims, we must arrive at statistical hypotheses. 
Whereas research hypotheses (in psychology) 
make claims about psychological constructs (and 
their relation, be it causal or correlational), are 
statistical hypotheses claims about data. That is, 
statistical hypotheses convert a description of a 
relation between psychological constructs into a 
mathematically precise description. This 
mathematical description has to correspond to 
specific claims about the characteristics of the data 
generating mechanism (i.e., the “population”).
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To illustrate this with an example: The research 
hypothesis: “Listening to music reduces your ability 
to pay attention to other things.” is converted into 
the a statistical hypotheses, like: “The group who 
listens to music will on average have a lower score 
in a visual attention test.”. This description 
formulates a (mathematically precise) description 
about what we are going to assess in our statistical 
analyses.

The statistical hypotheses typically formulates or 
serves as the alternative hypothesis (H1) for our 
statistical analysis: “Visual attention scores in the 
group listening to music are lower than in the group 
who doesn’t:  µM < µNM”. This alternative hypothesis 
has to be contrasted with a null hypo-thesis (H0; 
claiming the opposite): “Visual attention scores in 
the group listening to music are greater or equal 
than in the group who doesn’t: µM ≥ µNM.”
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We spoke about population and sample before. 
Please note that the mathematical terms in the 
hypothesis  µM and µNM indicate that, even though 
we are exploring these hypotheses in a sample, we 
would like to make a general statement (applying to 
the whole population, and formulating a general 
rule) afterwards.

The capacity to formulate good hypotheses is 
something that is not inborn, but a skill to be 
learned. As a recommendation: Especially, when 
you are doing this for the first time, try to formulate 
these hypotheses and then go to some friends or 
fellow students and see how much of what you 
have posited they understand. By doing that, you 
will over time being able to “refine” your hypotheses 
and to make them concise and precise. 



  

 

Research vs. statistical hypotheses
• when testing statistical hypotheses, we focus on 

how likely error is when rejecting H0

→ strong focus on only one of four outcomes
→ the error-likelyhood scales with sample size
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There is some caveat to statistical testing illustrated 
in those two schemata. Statistical tests are typically 
only dealing with the null hypotheses (H0): We 
assess, how likely it is that we make an error when 
rejecting the null hypothesis. This probability for an 
error that we are willing to accept is denoted as α. 
Unfortunately, that makes us strongly focus on only 
one of four possible outcomes shown in the 
schema: The likelihood of making an error when 
rejecting the null hypothesis, the so called type-I-
error. In the schema are also two possible correct 
outcomes: We reject the null hypothesis when it is 
wrong or we retain the null hypothesis when it is 
correct.
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Another error often goes unnoticed. It is the so-called 
type-II-error. We retain the null hypothesis even 
though it is wrong. The probability of making such 
an error is denoted as β and occurs if the 
alternative hypothesis is true (remember: it is 
either/or, i.e., if the null hypothesis is wrong the 
alternative hypothesis must be true). However, in 
order to reject the null hypothesis we need a certain 
difference (e.g., between two means: µM < µNM) that 
enables us to be reasonable sure THAT WE DON’T 
MAKE AN ERROR when rejecting the null 
hypothesis. It still might be that this difference is 
reflecting a true difference in the population (i.e., 
our alternative hypothesis is correct), but it is not 
sizeable enough to be sure enough that we don’t 
make an error when rejecting H0.
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A critical aspect is that the probability of making an 
error when measuring is dependent on the sample 
size. An example for such measurement error is 
denoted as standard error of mean, indicating how 
exactly we can estimate the true mean in the 
population when measuring a sample of the size n.
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This measurement error is what we base our decision 
about whether we can reject the null hypothesis or 
must retain it base upon. As I said, the sample size 
n is decisive for how large we estimate the 
standard error to be: The larger n is, the more likely 
it is that the statistics (i.e., the mean x) in the 
sample that we measured, reflects the true value of 
that parameter (µ) in the population. The larger our 
sample is, the larger is also which proportion of the 
population it represents, and the more likely it is 
that the parameter we estimate for the population is 
correct. Therefore, we assume the larger our 
sample is, the smaller the error will be when 
estimating the parameter in the population. This 
measurement error is then what we use to assess 
whether the null hypothesis can be safely rejected.
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As a general rule, the larger our sample is, the more 
likely it is to get a significant result. This leads to 
two consequences: If our sample size is small, we 
might retain the null hypothesis even though it is 
wrong because our sample size wasn’t large 
enough to be certain enough that we don’t make an 
error when we reject H0 (remember, the measure-
ment error is larger in small samples and we need 
a larger difference for safely rejecting the H0). If you 
have a very sizable sample (typically, n > 100), we 
also might reject the null hypothesis even though it 
is true (remember, we accepted that we make an 
error according to the defined α-probability, i.e., 
typically in 5% of all cases).
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Effect sizes to some degree help to solve that 
dilemma: The combined information about 
statistical significance and effect size helps us to 
assess both how likely we are going to make an 
error when rejecting the null hypothesis AND 
whether the difference we obtained (e.g.,  µM vs. 
µNM from the example above) is large enough to be 
practically meaningful. Fortunately, jamovi provides 
effects sizes to most (if not all) statistical analyses 
which it includes (often, when using SPSS you had 
to calculate them manually).
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if H0 were true

4) calculate the critical region, given
the α-level and one- or two-sided
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A already gave a theoretical explanation about what 
our statistical tests are based upon: The probability 
of making an error when rejecting the null 
hypothesis which is in direct relation to the 
measurement error we must expect to make when 
collecting data from a sample of size n.

Our hypothesis test is therefore essentially complete:
(1) we choose an α level (e.g., α  = .05);
(2) we come up with some test statistic (e.g., x) that 

does a good job (in some meaningful sense) of 
comparing H0 to H1
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(3) we figure out the sampling distribution of the test 
statistic on the assumption that the null hypothesis 
is true; and

(4) we calculate the critical region that produces an 
appropriate α level (considering whether we have a 
directed hypothesis, e.g., µM < µNM, when we test 
one-sided – upper figure – or an undirected 
hypothesis, e.g., µM ≠ µNM, when we test two-sided 
– bottom figure).

Fortunately, you were born late enough that our 
statistics software does the heavy lifting. In the first 
half of the 20th century, statisticians were carrying 
out these calculations with paper and pen.
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H1, idea of confidence intervals
• Bayesian: probability as a degree of belief (e.g., 10% 
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• p: NOT the probability that H0 is true (but the probability 

that we make an error when rejecting it)
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Before we go further, we should discuss the p-value 
which represents the main result of out statistical 
analysis. We have two accounts of what the p-
value means, one by Sir Ronald A. Fisher the other 
one by Jerzy Neyman. You should include both of 
them in your evening prayer (for providing you with 
so much fun… ;-): Fisher originally came up with 
the idea for null-hypothesis-significance-testing 
[NHST] and Neyman later extended and refined 
that concept (e.g., adding the idea of a confidence 
interval).
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The main difference between the two is that Fisher 
strongly focused on the null hypothesis (without 
contrasting it directly with an alternative 
hypothesis). His line of thought was that the data 
we collected had to be so extremely implausible 
according to the null hypothesis that the null 
hypothesis probably was wrong. According to his 
reasoning, p is the probability to have observed a 
test statistic that is at least as extreme as the one 
we actually did get. His line of thought meant that 
the null hypothesis provided an account of the data 
that was so very poor that you could safely reject it. 
Speaking in terms of the two schemata above, 
Fisher’s focus was mainly on the quarter with the α-
probability and the type-I-error.
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Jerzy Neyman had a stronger focus on the contrast 
between null and alternative hypothesis. This 
weighing of two alternatives is reflected in his 
account of the p-value. Here, p is the smallest α-
(error-)probability that you have to be willing to 
tolerate if you want to reject the null hypothesis and 
accept the alternative hypothesis. According to that 
account, the p-value is more of an abstract descrip-
tion about which “possible tests” were telling you to 
accept the null, and which “possible tests” were 
telling you to accept the alternative hypothesis.

Remember that we do not know the «true» value of a 
parameter in the population. The confidence inter-
val indicates that if we were to repeated our mea-
surement on numerous samples, calculated 
confidence intervals (which would differ for each 
sample) that encompass the true population 
parameter would tend toward 95%.
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Null-hypothesis-significance-testing [NHST] came 
under attack, and voices that demand to not use it 
at all and replace it with Bayesian statistics became 
stronger in recent years. One reason is the so-
called replication-crisis. It showed that not only the 
5% we typically accept as threshold for which error 
we are likely to make when carrying out NHST can’t 
be reproduced or replicated, but a much larger 
proportion of studies.
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A second reason are considerations (discussed 
above) about the likelihood of getting significant 
results varying with sample size and probably not 
reflecting a meaningful difference.

Finally, increasing computing capacity and capabili-
ties made solving calculations of measures of 
Bayesian statistics: Often these calculations are 
carried out using an iterative approach, i.e., a sta-
tistical model is refined step-by-step so that it best 
represents the data you collected. Doing such itera-
tions on paper is virtually impossible and even with 
computers some ten years ago it was at least very 
time-consuming.
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Bayesian statistics interprets probability as a degree 
of belief (e.g., a 10% chance that the null 
hypothesis is true given the data and 90% that the 
alternative hypothesis is true). Often, a measure 
called Bayes factor is used to quantify these 
probabilities: It expresses how much more likely the 
alternative hypothesis is compared to the null 
hypothesis and typically denoted as BF10; the 
“opposite” measure BF01 is used much less 
frequently and expresses how much more likely the 
null hypothesis is compared to the alternative 
hypothesis. Please note that for the first measure 
the subscript “10” means 1 (alternative) vs. 0 (null 
hypothesis) and “01” meaning vice versa. For 
example, a BF10 = 9 is the same as BF01 = 0.11 (1 / 
9) and express a 10% chance that the null 
hypothesis is true given the data and 90% that the 
alternative hypothesis is true (10% and 90% being 
in a 1:9-relation).
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According to a Bayesian approach, the p value is a 
terrible approximation to the probability that H0 is 
true since NHST is fundamentally a frequentist tool 
and as such it does not allow you to assign 
probabilities to both hypotheses: H0 is either true or 
not, whereas the probability of the alternative 
hypothesis H1 being either correct or wrong is not 
considered.



  

 

Conceptualizations of the p-value
• Fisher: strongly focussed on H0 (not directly contrasting it 

with an H1)
• Neyman: stronger focus on the contrast between H0 and 

H1, idea of confidence intervals
• Bayesian: probability as a degree of belief (e.g., 10% 

chance for H0, 90% chance for H1 given the data)
• p: NOT the probability that H0 is true (but the probability 

that we make an error when rejecting it)

UNIVERSITY OF BERGEN

SLIDE 75SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: CONCEPTS

A last word regarding an interpretation of the p-value 
that is common but fundamentally WRONG: p 
doesn’t express “the probability that the null 
hypothesis is true”. A null hypothesis is either true 
or it is not, it cannot have a “5% chance” of being 
true. What we assess is instead how likely we 
make an error when rejecting H0. In addition, such 
claim is also inconsistent with the mathematics of 
how p is calculated.
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Cohen, J. (1992). A power 
primer. Psychological Bulletin, 
112(1), 155–159. 
https://doi.org/10.1037/0033-
2909.112.1.155

I mentioned that it is good practice to give both, 
indicators of statistical significance (e.g., t- or F-
values and the p-value assigned to that test-
statistics) in COMBINATION with an indicator of 
effect size.
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Cohen, J. (1992). A power 
primer. Psychological Bulletin, 
112(1), 155–159. 
https://doi.org/10.1037/0033-
2909.112.1.155

A basic assumption about statistical significance 
testing is that the “quality” of your test increases the 
more measurements / participants are included. 
This is because, typically, the larger your sample to 
less likely is what you measured due to chance and 
reflected mathematically in that you have a smaller 
standard error with increasing sample size. As a 
consequence, the difference between (e.g.) the two 
conditions that you compare can be relatively small 
if you have a large sample of measurements. That 
is, sometimes, a difference can be significant 
without being practically meaningful (e.g., results in 
a students exam are increasing from 21 out of 40 to 
22 out of 40). As a consequence, we also often 
report what is called “effect size”, where the 
difference between to conditions is set into relation 
to the variation (measured as standard deviation) 
within the two groups.
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Cohen, J. (1992). A power 
primer. Psychological Bulletin, 
112(1), 155–159. 
https://doi.org/10.1037/0033-
2909.112.1.155

To further illustrate the point with the large sample: If 
you make a thought experiment where you sample 
heads or tails when throwing a coin, you can be 
less certain not to make an error in claiming that 
your coin is “special” when getting 7 times heads in 
10 throws than if you get 700 times heads in 1000 
throws. You can try this out in reality as well if you 
like: with a “normal” coin, i.e., a coin where heads 
and tail are equally likely, you can try how often you 
have to repeat your 10 throws before you got at 
least 7 times heads (on average after about the 6th 
trial), whereas I can (kind of) guarantee you that 
you die before having the first success when trying 
to get 700 times head in 1000 throws (it is so large 
that computers can’t calculate it, i.e., larger than 
1038).
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Cohen, J. (1992). A power 
primer. Psychological Bulletin, 
112(1), 155–159. 
https://doi.org/10.1037/0033-
2909.112.1.155

There is a couple of common effect size measures. 
Cohen’s d is maybe the best known one. It divides 
the difference between the mean of two conditions 
by the population standard deviation. Typically, 0.2 
< d < 0.5 is regarded a small effect, 0.5 < d < 0.8 a 
moderate effect, and d ≥ 0.8 a  large effect. 
Correlation or regression models often use r or R. 
Here, 0.1 < r < 0.3 is regarded a small, 0.3 < r < 0.5 
a moderate and r ≥ 0.5 a large effect size. We will 
discuss effect sizes in more complex statistical 
models (e.g., ANOVAs) when we introducing them. 
Here, often η² (eta-squared) measures are used. 
These express what proportion of the variance is 
explained by a certain factor (but are affected if 
samples sizes per condition are unequal). Often 
one is more interested in quantifying differences 
between two conditions (even for factor with more 
than two steps). In such case, using post-hoc-test 
that can output Cohen’s d is maybe a wise choice.
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Cohen, J. (1992). A power 
primer. Psychological Bulletin, 
112(1), 155–159. 
https://doi.org/10.1037/0033-
2909.112.1.155

A very readable introduction into effect size is 
provided in this article:

Cohen, J. (1992). A power primer. Psychological 
Bulletin, 112(1), 155–159. 
https://doi.org/10.1037/0033-2909.112.1.155

In the jamovi-book (Navarro & Foxcroft, 2019), effect 
sizes are discussed in Chapter 11.7.

https://doi.org/10.1037/0033-2909.112.1.155
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Let’s briefly summarize which theoretical concepts 
we introduced.

We started with an overview what we actually 
measure, using units, variables and values to 
describe that.

Then we turned to populations as the level we 
typically would like to make claims about and the 
sample that we select from that population to 
measure. We further introduced the concepts of 
descriptive statistics and inference statistics. 
Finally, we introduced methods to select samples 
so that they are representative for the population.

Afterwards, we spoke about different levels of 
measurement – nominal, ordinal, interval and ratio.

I then stressed why it is sensible to organize your 
data and how this could be done.
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Afterwards, we used an example dataset and carried 
out a descriptive statistic analysis in order to 
describe the dataset and assess assumptions 
(normality) to use inference statistics with these 
data.

Then, we spoke about research and statistical 
hypotheses. What makes good research 
hypotheses and how do we “transform” research 
into statistical hypotheses that can be tested.

The p-value is very central to hypothesis testing. 
Therefore, different conceptualizations of the p-
value were introduced: Fisher, Neyman, and Bayes.

Finally, we discussed the problem that we accept a 
certain probability of error when doing hypothesis 
tests and that with large samples, tests might 
(relatively) easily become significant. Effect sizes 
were introduced as concept to counter that and 
assess to what degree the observed differences 
have practical significance.



  

 

Thanks for now!
To be continued...
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