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Welcome to the lecture on linear regression analysis. 
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The lecture will start with a brief introduction that 
“embeds” regression analyses among other 
statistical analyses introduced in the course.

Then, we dig deeper in principles and background for 
regression analyses, covering the mathematical 
background (and how it compares to a correlation), 
criteria that we may use to choose independent 
variables, and what sample sizes are recommen-
ded for regression analyses.

Afterwards, we will conduct a simple regression in 
jamovi.

There are multiple assumptions to be met in order to 
be sure that the regression model we estimated is 
valid. This begins with initial checks: e.g., normality 
and outliers in the variables that we want to include 
in the model, and continues with assumption 
checks after estimating the model, among them 
checks for collinearity and for characteristics of the 
residuals.
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The fourth part introduces several approaches to 
build regression models: standard, hierarchical, 
and statistical. Within hierarchical, a practical 
introduction is given how to carry that out in jamovi.



  

 

Introduction

The next part embeds and contextualizes regression 
analyses in relation to other statistical analyses 
introduced in the course.



  

 

Categorical vs. continuous vars.
• categorical variables contain a limited number of 

steps (e.g., male – female, experimentally 
manipulated or not, level of education)

• continuous variables have a (theoretically unlimited) 
number of steps (e.g., body height, weight, IQ)

• ANOVA (session in two weeks) is for categorical 
predictors, regression analyses (this session) and 
correlation (refresher) are for continuous predictors
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I will (again) use the distinction between categorical 
and continuous variables to contextualize 
correlation and regression analyses.

Categorical variables encompass the variables from 
the two measurement levels nominal and ordinal 
(for an more extensive overview on measurement 
levels, see the introduction). Strictly speaking is 
ordinal a hybrid since non-parametric methods (i.e., 
non-parametric correlations) are possible with 
ordinal variables. However, for more complex 
regression models there is no non-parametric 
choice.

Continuous variables encompass the two variable 
levels interval and ratio.

For regression analyses (and correlations) we use 
continuous predictor (independent) variables and 
continuous outcome (dependent) variables. For 
ANOVAs we have (mainly) categorical predictors. 
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independent
dependent categorical continuous
categorical chi-squared logistic regression

continuous

t-test,
ANOVA

(incl. ANCOVA)
experimental

design

correlation,
linear regression
(incl. moderation,  

mediation)
survey design

Both classes of methods (linear regression and 
ANOVA) are based upon the General Linear Model 
(I will say more on that later). Linear regression is 
covered quite extensively in this lecture, ANOVA in 
another lecture in two weeks time. In between, 
there will be a lecture on mediation and moderation 
which is based upon regression models but 
extends them. 

Both, ANOVA and lineare regression, are quite 
central to our methods repertoire. ANOVAs are 
typically used to analyse data from experiments 
(where we manipulated one or more factors, 
representing categorical variables), whereas linear 
regression models are often used to analyse data 
acquired with questionnaires.



  

 

• relation hypotheses explore whether there is a relation 
between one (or more) independent and a dependent 
variable (functional form)

• difference hypotheses explore whether there is a 
difference between the steps of one (or more) independent 
and a dependent variable (parameter)

• the distinction between IV and DV is blurred for relation 
hypotheses
→ causality can only be inferred if the independent variable 
was experimentally manipulated

Relation vs. difference hypotheses
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Another way of describing the distinction between 
categorical and continuous predictor (independent) 
variables is that between relation vs. difference 
hypotheses.

With relation hypotheses we explore the relationship 
between one or more independent (predictor) 
variable and a continuous dependent (outcome) 
variable. Regression analyses explore relation 
hypotheses.

For categorical variables as predictor (independent) 
variables we are often more interested in whether 
results from two (or more) categories significantly 
differ from each other, most typically to ask whether 
our experimental manipulation made a difference 
(i.e., had an effect).
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One thing to be careful about in the context of 
relation hypotheses is that causality can typically 
not be claimed for relational hypotheses.

Causality can only be inferred if (1) the dependent 
variable precedes the independent variable in time 
and (2) if the independent variable was 
manipulated in order to measure the effect on the 
dependent variable. Often the precedence can’t be 
so easily established for relational hypotheses and 
regression analyses exploring such hypotheses. An 
example where a manipulation of a continuous 
variable could be imagined (but still would be quite 
costly to acquire) is where the dosage of a 
treatment is manipulated in an experiment. 
However, often we compare two to four steps of 
dosage (which makes the variable categorical) 
since sampling over the whole range would require 
too many measurements.



  

 

Principles and
background

The next part is speaking about the background and 
the principles behind correlation and regression 
analyses. This first half of that part is mainly 
theoretical and covers the mathematics behind the 
method, criteria for choosing independent 
variables, and considerations regarding sample 
sizes.

That will be followed by a more practical part with a 
demonstration of a simple regression in jamovi.



  

 

• correlation: measure size and direction of a
linear relationship of two variables (with the
squared correlation as strength of association
– explained variance)

• regression: predict one variable from one (or 
many) other (minimizing the squared distance
between data points and a regression line)

Ŷi = B0 (= a) + B1Xi1 + B2Xi2 + … + BkXik (ŷ = a + bx)
R = rYŶ (rxy) Yi = Ŷi + εi

Principles and background
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X1 X2 X3

Y4

X4

When we use a correlation, our aim is to determine 
the size and the direction of a linear relationship 
between pairs of variables. Regression, however, is 
a little more complex and has slightly different aims.

First of all, regressions can include several 
independent (predictor) variables in order to predict 
one dependent (outcome) variable. In contrast, in 
correlations, the distinction in independent and 
dependent variables is often rather blurred.

However, within regression models, we still can not 
claim causality in most cases, even though we 
might think of the relationship between independent 
and dependent variables as the independent 
influencing the dependent variables.
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When we think about correlations, they are most 
easily imagined as a scatter plot with a regression 
line. The term regression line already makes a 
reference that a correlation follows the same 
principles as a regression.

To mathematically describe such a regression line in 
a correlation, we use the green formula on the right 
hand side: ŷ = a + bx. It means that the value we 
predict for y is composed of multiplying the value 
from the x-variable with a certain weight b and then 
adding a. b describes the slope of the regression 
line, i.e., how much increase in y results from 
increasing x by 1. a describes what value ŷ has if x 
= 0 (that is the point where we cut the y-axis; in the 
current example that value is 3). The hat (^) we put 
on y denotes that this is an estimate that differs 
(more or less) from the real value of y that we 
measured. More on that in a second.
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If we take a closer look at the formula, then we see 
that the formula on the left is just a little more 
complex way to write the formula that we used for 
the correlation. Whereas we only deal with one 
variable for x in the correlation formula (right, 
starting with ŷ), we can include multiple predictors 
in a linear regression.

The reason why all the letters are uppercase is that 
those variables are now arranged as vectors (Ŷ, B) 
and matrices (X).

I mentioned that both regression analyses and 
ANOVAs are based upon the General Linear Model 
which uses matrix algebra. You are lucky that you 
won’t see much of all the mathematics behind that. 
Software is doing all that for you. I had to do a 
matrix inversion (on paper) to manu-
ally estimate the B-vector in my statistics exam 
(some 25 years ago). Tiresome, but it helped 
understanding what happened behind the scenes.
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Within the X matrix, we have one participant per row 
and one variable per column. In addition, we have a 
column at the very beginning (X0; containing “1” for 
all participants). This column permits to calculate B0 

which is equivalent to the “a” in the simple form and 
takes care of the mean, i.e., which value y would 
have if all values in X were 0).

Given that we deal with matrices, the whole equa-
tion could even be simplified to Ŷ = BX. This means 
that Ŷ is estimated by multiplying our independent 
variables (assembled in the X matrix) by certain 
weights B (slopes, i.e., information about how much 
Y is going to increased if the independent variables 
were to increase by 1). This means, we calculate Ŷ 
by first taking B0 multiplied by the “1” in the first 
column, add the value of the first predictor X1 
multiplied with its slope B1, add X2 multiplied by B2 
and so on to arrive at our estimate Ŷ.
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There are two caveats with those formulas. Some-
times (as in the jamovi book) you may not find the 
additional index / subscript i in the formula, making 
it look like Ŷ = B0 + B1X1 + B2X2 + … This i indicates 
a counter for each individual included in the analy-
sis. A nice feature of adding the index is that it 
makes clear which variables can vary and which 
are fixed. Another difference may be that b might 
occasionally be written in lowercase.

The other caveat is the we have our estimate Ŷ on 
the one hand and the real value of Y (that we 
measured) on the other hand. They are not the 
same and therefore we have a further vector ε that 
contains the difference between our prediction and 
the real value. This is shown in the formula at the 
bottom left (Y = Ŷ + ε). Our aim is to make our 
predictions as exactly as possible. That is typically 
achieved by trying to minimize the values in ε.
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Actually, we aim to minimize the squared values that 
are contained in ε. The reason for that is (at least) 
twofold: If we square those values, (1) larger 
differences get a higher weight, and (2) all values 
become positive (which makes handling them 
easier). These squared deviations contained in ε 
are then summed up (over rows, i.e., participants) 
and this sum of squared deviations is going to be 
minimized. The method for that is called ordinary 
least squares (OLS) regression.

A visual impression about how this is done can be got 
from Figure 12.11 and Figure 12.12 in the jamovi-
book (Navarro & Foxcroft, 2022; p. 295 / 296).
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One last comment on our matrices: I already 
mentioned that X (one row per participant, one 
column per variable) is multiplied by B (one column 
per variable). When doing a matrix multiplication, 
each cell is multiplied and then added up 
(according to the formula above: B0 [ · 1] + B1 · X1i + 
B2 · X2i ….) This time, I added the i to indicate that 
this is done per participant. We end up with a 
vector Ŷ (one row per participant). This vector 
differs from what we measured in Y (also one row 
per participant). When subtracting the two, we get ε 
(again, one row per participant).

Taking the whole formula, Y (our measured values) is 
composed of the part we predict (BX) and the part 
we can’t predict (ε). Setting those two into relation 
is central for the evaluation of statistical 
significance for our model.



  

 

• Parameter estimation: Mini- 
mize the squared error

• Yi = B0 + B1·Xi1 + … + Bk·Xik+ εi

Y = BX + ε     [  = (X’X)B̂ −1 X′Y]
Y, y   = dependent variable
X, [x1…xk]  = predictor variable
B, [b0…bk]  = predictor weights

(b0: intercept; b1…bn: slope)
E, [e]   = error term
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The current slide provides a bit of a graphical 
visualization of how we assess significance. We 
see again the formulas for the general linear model, 
and three figures on the right.

The first figure (top-left) shows the situation if we had 
no independent (predictor) variables. In that 
situation all participants are assessed relative to the 
mean.

If we fit a regression line (top-right), we add a certain 
independent variable to “explain” the data. As a 
consequence, our prediction gets more precise and 
the yellow lines (representing the error ε) get 
shorter.

What we do for significance testing is to take the 
predictions that are due to the model (bottom-left; 
i.e., the distances from the mean to our regression 
line) and set those into relation to the part that we 
can’t explain (the short yellow line in the top-right 
figure).
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• Parameter estimation: Mini- 
mize the squared error

• Yi = B0 + B1·Xi1 + … + Bk·Xik+ εi

Y = BX + ε     [  = (X’X)B̂ −1 X′Y]
Y, y   = dependent variable
X, [x1…xk]  = predictor variable
B, [b0…bk]  = predictor weights

(b0: intercept; b1…bn: slope)
E, [e]   = error term

We then compare a null hypotheses where we 
assume that the mean is a reasonable predictor to 
our alternative hypothesis claiming that we make a 
better prediction if we fit regression lines to include 
one (or more) independent variables.

H0: Yi = b0 + εi

H1:

When we square the length of the yellow lines in the 
figure and sum them up. This is called sum of 
squares. We have three of those:

SStot (top left) = SSmod (bottom left) – SSres (top right)

Y i = b0 + (∑k=1

K

bk⋅X ik ) + ϵi
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• Parameter estimation: Mini- 
mize the squared error

• Yi = B0 + B1·Xi1 + … + Bk·Xik+ εi

Y = BX + ε     [  = (X’X)B̂ −1 X′Y]
Y, y   = dependent variable
X, [x1…xk]  = predictor variable
B, [b0…bk]  = predictor weights

(b0: intercept; b1…bn: slope)
E, [e]   = error term

This square sums are then „standardized” by how 
many degrees of freedoms we needed to calculate 
them. The core behind the idea of the degrees of 
freedom (df) is that each sum of squares (SS) is 
standardized or weighed by how many independent 
sources of variation contributed to calculating it.

Originally, the number of participants (N) was the 
number of sources. If you calculate the mean, we 
have one parameter fixed. Each independent 
variable takes up on degree of freedom for the 
model. The remaining degrees of freedom that go to 
the residuals are therefore dfres = N (original sources 
of variation) – K (independent variables in the 
model) – 1 (mean).

We use dfres = N – K – 1 and dfmod = K to „standar-dize“ 
our sums of squares and to arrive at what is called 
the mean sum of squares: MSmod = SSmod / dfmod and 
MSres = SSres / dfres Those are set into relation to 
calculate F = MSmod / MSres



  

 

regression techniques:
• standard, hierarchical, statistical

typical research questions for using regression analysis:
• investigate a relationship between one DV and several IV
• investigate a relationship between one DV and some IVs 

with the effect of other IVs statistically eliminated
• compare the ability of several competing sets of IVs to 

predict a DV
• (ANOVA as a special case with dichotomous IVs)
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We distinguish three different techniques for doing a 
regression: standard (where all independent 
variables are entered in the regression model at 
once), hierarchical (where we add independent 
predictors in a certain succession based upon how 
we theoretically assess the influence of that 
variable), and statistical (where the statistics 
software does the variable selection for you).

I won‘t cover too much of that statistical approach. 
The practical reason is that it is not implemented in 
jamovi (it can be easily done in R from within 
jamovi if you really want it). There are also reasons 
why jamovi doesn‘t implement it: the statistical 
approach is most suited for generating hypotheses 
but often abused for testing them. This often 
happens without proper hypotheses regarding 
which independent variable contributes to the effect 
on the dependent variable and how. Overfitting is 
another problem of that method.
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regression techniques:
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typical research questions for using regression analysis:
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We have three (plus one) main purposes (i.e., classes 
of research questions) that are typically evaluated 
using regression analyses.

(1) We aim to evaluate the relationship between 
several independent variables onto one dependent 
variables.

(2) Within the independent variables, we might have 
some variables we are genuinely interested in and 
some other variables where we want to statisti-
cally control for their influence (nuisance variables) 
thereby excluding or removing that influence.

(3) Quite central within regression also stands that we 
can collect data from one sample and after-wards 
making predictions for another sample. Let’s 
assume we measure one personality characte-
ristic that is difficult to assess with test X,Y, and Z in 
one sample. Afterwards we could estimate this 
characteristic in another sample, just by taking their 
test results in X, Y, and Z.
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regression techniques:
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typical research questions for using regression analysis:
• investigate a relationship between one DV and several IV
• investigate a relationship between one DV and some IVs 

with the effect of other IVs statistically eliminated
• compare the ability of several competing sets of IVs to 

predict a DV
• (ANOVA as a special case with dichotomous IVs)

(4) Finally, given that both linear regression and 
ANOVA are based upon the same mathematical 
model, the General Linear Model, both of them 
represent “special cases” of each other and can be 
converted into one another. Regression analyses 
and ANOVAs are mathematically quite similar. 
What differs is whether the mean focus is on 
exploring relation-hypotheses or difference-
hypotheses.

For example, if we were to include categorical 
(dichotomous) independent variables in a 
regression, we can quite easily include elements of 
an ANOVA. Vice versa, including a continuous 
predictor (making the ANOVA an ANCOVA) 
includes elements of a regression into the ANOVA.



  

 

predicting scores for members of a new sample:
• regression coefficients (B) can be applied to new 

samples
• generalizability should be checked with cross-

validation (e.g., 50/50, 80/20 or boot-strapping)

changing IVs:
• squaring IVs (or raising to higher power) to explore 

curvilinear relationships
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I mentioned that we can use the coefficients (B) 
estimated from one sample where we measured 
both independent and dependent variables to 
another sample where we only know the values for 
the independent variables.

When we do the estimation, we should employ a 
technique called cross-validation in order to ensure 
that the data can really be generalized to new 
samples. The idea behind cross-validation is that 
we split our sample (e.g., using 80% of the 
participants for estimating the model, applying it to 
the remaining 20%) and see how exactly that 
estimate fits with the real dependent variable. Boot-
strapping describes that this process (split, 
estimate, check) is repeated numerous times.
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Another opportunity to go even beyond that is that 
regression analyses could in principle even employ 
independent variables raised to higher power (e.g., 
by squaring them) in order to explore curvilinear 
relationships. If we can see that our dependent 
variable is curvilinear, we can raise one or more 
independent variables to higher power. The 
decision which variables are raised can be either 
made based on theoretical assumptions: there 
might be one independent variable where we 
expect that it might contribute to the curvilinear 
slope in the dependent variable. We could as well 
try it out for all variables (which possibly isn’t really 
recommended given that we still have to interpret 
those results).

Given that such situations are rather special, the 
method is not covered in detail in this lecture.



  

 

considerations for which IVs to choose:
• implied causality
• further considerations (or lack of) regd. inclusion of variables

theoretical: if the goal is the manipulation of a DV, include 
some IVs that can be manipulated as well as some who can’t
practical: include «cheaply obtained» IVs (existing data; SSB)
statistical: IVs should correlate strongly with the DV but weak 
with other IVs (goal: predict the DV with as few as possible 
IVs); remove IVs that degrade prediction (check residuals)
choose IVs with a high reliability
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There are several aspects to consider when deciding 
which variables to include in our regression model. 
The first case is that we assume that a certain 
independent variable might be responsible for a 
certain effect on the dependent variable (that is, we 
imply a certain causal relationship between the two 
variables).

There are further aspects that may influence which 
independent variables we choose to include in our 
model. Those aspects fall into three categories:

“Theoretical” indicates that we make the decision 
about inclusion based upon that we theoretically 
expect them that independent variable to have a 
relation to the dependent variable AND to be 
capable of being manipulated easily. Such 
considerations might especially apply if we want to 
manipulate the dependent variable (e.g., in the 
context of an intervention).
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We may make the decision based upon practical 
considerations, such as that the data can easily be 
obtained from a register or the SSB (Statistisk 
Sentralbyrå). Collecting data is always costly, so a 
rather “inexpensive” option is preferable where this 
is possible.

Finally, there are statistical considerations. Ideally, 
independent variable are all relatively highly 
correlated with the dependent variable and 
relatively minimal among each other. If we think of 
the variation of the dependent variable as a cake, 
each independent variable should help to explain a 
different piece or bit of the cake. If the indepen-
dent variables are relatively highly correlated, these 
pieces would overlap to a considerable degree. 
That is, even though both variables could contribute 
to explaining that piece only one is considered and 
the other would be “wasted”.



  

 

ratio of cases to IVs (m = IVs):
N ≥ 50 + 8m for multiple correlation (standard / hierarchical)
N ≥ 40m for multiple correlation (statistical)
N ≥ 104 + m for individual predictors
(assuming α = .05, β = .20 and medium effect size;
higher numbers are needed if the DV is skewed, small effect size is 
anticipated or substantial measurement error is expected)
N ≥ (8 / f²) + (m – 1) [f = .02, .15, .35 for small, medium, large eff.]
strategies for insufficient N: exclude IVs, create composite meas.
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Finally, a couple of recommendations for sample 
sizes. All these recommendations are based upon 
the assumption that we are willing to accept to 
make a type-I-error (rejecting the H0 if it were true; 
α) in 5% of all cases (0.05), a type-II-error (retain 
the H0 if it were false; β) in 20% of all cases and a 
medium effect size (equating to a correlation of at 
least 0.3).

For the two cases covered in that lecture, standard 
and hierarchical, the number of participants should 
be 50 plus an additional 8 for each independent 
variable we want to include (with 3 IVs: 50 + 3 · 8 = 
74). Statistical selection has a higher danger for 
overfitting therefore the sample size there should 
be 40 for each independent variable. If we wan’t to 
assess coefficients for individual predictors, we 
need sample sizes of 104 plus one for each 
independent variable.
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ratio of cases to IVs (m = IVs):
N ≥ 50 + 8m for multiple correlation (standard / hierarchical)
N ≥ 40m for multiple correlation (statistical)
N ≥ 104 + m for individual predictors
(assuming α = .05, β = .20 and medium effect size;
higher numbers are needed if the DV is skewed, small effect size is 
anticipated or substantial measurement error is expected)
N ≥ (8 / f²) + (m – 1) [f = .02, .15, .35 for small, medium, large eff.]
strategies for insufficient N: exclude IVs, create composite meas.

This might mean that if we had a sample size of 80, 
we could evaluate a model as a whole if it had up to 
three predictors, but we shouldn’t report the 
significance for individual coefficients. These 
sample sizes are recommendations so you might 
still do otherwise but you should be aware that it 
maybe a bit shaky grounds that you are standing 
on (which may call into question whether your 
results can be generalized).

Another caveat is that effect sizes and the character 
of your variable might play in. These recommen-
dations might be too low if your dependent variable 
were skewed or if your effect size were not medium 
but small (vice versa could the required sample 
sizes be reduced if you effect sizes were large).

Strategies to deal with too low sample size could be 
to exclude independent variables or to calculate 
composites (by summing or averaging scores).



  

 

How to conduct a 
linear regression?

The next part is speaking about the background and 
the principles behind correlation and regression 
analyses. This first half of that part is mainly 
theoretical and covers the mathematics behind the 
method, criteria for choosing independent 
variables, and considerations regarding sample 
sizes.

That will be followed by a more practical part with a 
demonstration of a simple regression in jamovi.



  

 

how to conduct a linear regression:
● select Regression → Linear Regression
● assign dan.grump to “Dependent variable”

and dan.sleep, baby.sleep, and day to
“Covariates”

● the results in-
dicate a strong
prediction, based
mainly upon
dan.sleep

Principles and background
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We can conduct a linear regression by clicking on the 
“Regression”-button and then selecting the second 
option “Linear regression” from the menu that 
opens. On the left hand side of the screen there is 
a window / grey area where we make our 
selections. In the most simple case, we assign one 
variable that we want to predict as “Dependent 
variable”, in our case dan.grumpy. Then we assign 
one or more variables that we want to use to 
predict the dependent variable to “Covariates”, 
those variables are dan.sleep, baby.sleep, and day.
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Then, we can have a look at the output: The first 
table “Model Fit Measures” tells us a R is 0.903. 
This value can be treated like a correlation 
coefficient, meaning that we can interpret it like 
one. “0.903” is close to 1 and therefore fairly 
substantial. Whereas we used one “predictor” to 
determine the correlation coefficient, we now use 
multiple predictors to “compile” R (i.e., each 
independent variable contributes to R).

There is another aspect which is different from the 
correlation coefficient. R is always positive 
(whereas r can range between -1 and 1). The 
reason is that several independent variables 
contribute to R. They might influence the 
dependent variable in different directions. If we look 
under “Estimate” we see a negative coefficient for 
dan.sleep. This tells us that the less Dan sleeps the 
more grumpy Dan gets.
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Now let’s assess the coefficients. We can only 
interpret the coefficient for dan.sleep that became 
significant (according to the p in the last column; p 
< 0.001). That is, baby.sleep and day don’t really 
seem to contribute to the prediction and we may 
decide to remove them from the independent 
variable (i.e., the variable list in “Covariates”).

Let’s have a closer look at how it is assessed 
whether a coefficient is significant or not. We, as 
always start with two hypotheses: H0: b = 0 and H1: 
b ≠ 0. In order to arrive at the t-value, we divide that 
coefficient (or strictly speaking the estimate for it b̂) 
by it’s standard error SE(b̂): t = b̂ / SE(b̂)

If that variation in b̂ is considerably larger than the 
standard error when measuring it SE(b̂) that 
variation is likely not just due to chance and we can 
assume that its influence is significant.
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What is important is that the standard error of the 
estimated regression coefficient SE(b̂) depends on 
both the predictor and outcome variables, and it is 
somewhat sensitive to violations of the 
homogeneity of variance assumption.

You may skip the rest of the slide if you don’t like 
formulas.

To calculate the standard error we start with the 
residuals: ε = y – Xb̂

Those residuals are then used to calculate the 
estimated residual variance σ̂² = ε‘ε / (N – K – 1)

This variance is then multiplied by the inverse of our 
data matrix and its transposition: σ̂² (X’X)-1 

The main diagonal of the resulting matrix is SE(b̂).
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There are two further things to mention: (1) As I said 
one aim within regression models is to control for 
nuisance variables. Those might be categorical. If 
so, they can be added to the variable list under 
“Factors”.

(2) Remembering what was said about sample sizes 
before, we should be cautious about interpreting 
our coefficients. In principle, the demanded sample 
size would be 104 + 3 = 107. We only have 100 
cases / measurements. Given that the model has a 
pretty substantial effect size (R ~ 0.9), this reduces 
the required sample size. Therefore, we still might 
be safe to report these coefficients.



  

 

how to conduct a linear regression:
● we would like to know how large 

the adj. R² is and whether the
model as a whole is significant
→ tick “Adjusted R²” and “F test”
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In addition to R² there is a so called adjusted R² 
which can be selected in the drop-down-menu 
“Model Fit”. The motivation behind calculating the 
adjusted R² is the observation that adding more 
predictors into the model will always cause the R² 
value to increase (or at least not to decrease). For 
a regression model with K predictors, fitted to a da-
ta set containing N observations, the adjusted R² is:

The big disadvantage is that the adjusted R² value 
can’t be interpreted in the elegant way that R² can. 
R² has a simple interpretation as the proportion of 
variance in the outcome variable that is explained 
by the regression model. If you care more about 
interpretability, then better report R², if correcting for 
bias is your main concern, then adjusted R² is 
probably better reported.

adj R ² = 1 − ( SSresSS tot
× N−1
N−K−1 )
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Finally, we would like to know whether the model as a 
whole is significant. When checking the coeffici-
ents, we already explored which of the independent 
variables makes a significant contribution and to 
what degree.

Now, we are interested in whether the whole model is 
significant. As said earlier in the theoretical 
introduction, we are dealing here with a comparison 
between a null hypothesis based upon a model 
containing only the mean to an alternative 
hypothesis where we claim that our model as a 
whole (i.e., based upon the contribution of all 
independent variables) makes a better prediction 
than the one based just on the mean.

                         The whole model is highly significant,  
                      indicating that we can make a much 
better prediction with the help of our independent 
variables.

F=
SSmod /K

SS res / (N−K−1 )



  

 

Assumption for
linear regressions

If something was unclear in that or a previous part, 
remember that you can ask questions in the 
discussion for that lecture on MittUiB.

The next part is dealing with assumptions we have to 
obey in order to ensure that our models are valid.



  

 

Conditions for parametric tests
• conditions for using parametric tests (such as 

correlation, regression, t-test, ANOVA)
• if one of these conditions is violated, non-

parametric tests have to be used
• robustness against violation of certain assumptions 

(relatively robust against deviation from normality; 
deviations from linearity and homoscedacity do 
not invalidate an analysis but weaken it)
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Generally, all parametric methods we use have 
certain assumptions that are required to be met in 
order to use those methods. If one of these 
assumptions (detailed on the next slides) is violated 
we should consider using non-parametric methods.

That said, most parametric methods have a certain 
“robustness” against violations of these assump-
tions. That means we may still use them. However, 
we should be cautious with our interpretations 
since our analyses are weakened by violating these 
assumptions. Three main assumptions are 
normality, linearity, and homoscedacity.
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Initial checks

Check residuals

Linearity
Unusual cases

Scatterplots
(DV → each IV)

Transform data Lack of linearity?

Linearity

Homoscedacity

Independence

Normality

Assumptions met?
No bias?

Model can be
generalized

QQ-plot (residuals)
Shapiro-Wilks

Residual plots

adapted
after
Field (2018)

This overview provides a kind of map where we 
should go and what we should do.

Generally, the measures fall into two main categories: 
(1) Assumptions that we check before subjecting 
our variables to our regression analyses.
(2) Assumptions we check within an regression 
analysis: The latter assumptions chiefly concern the 
residuals (ε from the formula, i.e., the difference 
between what we predicted and the real data). A lot 
takes the form of residual plots (which are scatter 
plots) where you can visually assess if certain 
assumptions are violated (leading to a characteris-
tic appearance of the points in the scatter plots). 
The other aspect is that we have to ensure that the 
residuals are normally distributed, which can be 
assessed using the Shapiro-Wilk test and visually 
in a QQ-plot for those residuals.

If the assumptions are met, we can be reasonably 
sure that our model is valid and can be generalized.



  

 

Conditions for parametric tests
• normality and

possible causes for
normality violations
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Both the independent and the dependent variables 
have to be normally distributed. A way to check this 
statistically is with using the Shapiro-Wilk test 
(which can be found under “Exploration” → 
“Descriptives” in the drop-down-menu “Statistics” at 
bottom right). If this test is not significant, the tested 
variable doesn’t significantly deviate from a normal 
distribution and we are safe to use it.

Visually, we can use QQ-plots (also to be found un-
der “Exploration” → “Descriptives” in the drop-
down-menu “Plots”, bottom left). If the data are 
normally distributed, they fall (more or less) on the 
diagonal line. If they deviate visibly, as in the 
bottom two examples above, something is wrong, 
e.g., because our distribution is to “peaky” (i.e., 
contains an over-proportional amount of data 
around the mean) or if the distribution is skewed.



  

 

Conditions for parametric tests
• linearity

(non-linear
models are
available, but
not introduced
here)
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Y1 Y2 Y3

X1 X2 X3

Y4

X4

Assessing those relationships is done via scatter 
plots. The perhaps easiest way to do this is via 
“Regression” → “Correlation Matrix” and then tick 
“Correlation matrix” under “Plot”.

Check all combinations of the dependent variable 
with each independent variable you intend to 
include in the model. If they show a non-linear 
relationship (as the right example figure), you 
should consider not including that independent 
variable in your prediction.
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Y1 Y2 Y3

X1 X2 X3

Y4

X4

The requirement for linearity (i.e., linear relationships 
between independent and dependent variables) 
results from that we use the General Linear Model 
for our estimation, and the that model describes our 
predicted value of the dependent variable (Ŷ) as a 
linear combination of independent variables (X) 
multiplied by their weights (B).

A certain robustness can also be seen from the 
example on the right: The linear regression line that 
was fitted there does a reasonable job in describing 
that non-linear relationship. However, violating that 
assumption also clearly means that our model is 
weakened because a non-linear model would be 
much better suited to describe this relation.



  

 

Conditions for parametric tests
• consequences of

not removing out-
liers on the skew-
ness (and in con-
sequence the nor-
mality) of a distri-
bution
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From within “Exploration” → “Descriptives” in jamovi, 
we can also choose two other plots that help us 
detect outliers. The plots can be obtained from 
“Exploration” → Descriptives with ticking “Histo-
gram” and “Box plot” in the drop-down-menu “Plots”

The example on the slides clearly show the effect of 
one single (and extreme) outlier. In comparison to 
the right side, where this outlier has been removed 
and where the data look as if they were pretty much 
in accordance with a normal distribution is the 
histogram on the right hand side quite skewed to 
the left. The outlier is marked in the box plot and 
the histogram.



  

 

Conditions for parametric tests
• a violon- / box-plot

combination even
allows assessing
outliers within one
figure

UNIVERSITY OF BERGEN

PAGE 44

An even more elegant way of displaying outliers is 
the combination of a box and a violin plot (at least 
in my opinion). It can be obtained by unticking 
“Histogram” and ticking “Violin” (under Box plots). 
In principle is the violin plot a histogram which is 
turned 90° to the left and smoothed. It makes 
assessing outliers and the normality of the variable 
possible within a single figure.

Again, left shows the version with the outlier still 
contained in the data, right where it has been 
removed.



  

 

Conditions for parametric tests
• consequences of not removing outliers on the 

slope of a correlation / regression
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For showing the effect the removal of an outlier has 
on our regression model, I will use Anscombe’s 
quartet (this time example 3). You can see on the 
left, that all except one point falls on an (imaginary) 
regression line that you could think going through 
all points except the outlier. However, the 
regression line is “tilted” because the regression 
model is based upon minimizing the squared 
deviation over ALL variables. Therefore, the one 
outlier gets are relative large influence in 
comparison to the rest of the variables (as those all 
fall quite close to the regression line). If the outlier 
is removed, the remaining points all become 
located perfectly on the regression line (at the 
same time, the correlation coefficient is increased 
from 0.816 to 1.000).



  

 

Conditions for parametric tests
strategies for removing outliers:
extreme z-values (for 1/1000 → p = .001 → z = ±3.3)
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We can adopt a number of different strategies in order 
to remove outliers. The first one is based upon z-
values (i.e., assumptions about how likely the 
occurrence of certain outliers is given a normal 
distribution). To ensure that we only exclude cases 
that are reasonably unlikely (i.e., shouldn’t have 
occurred), we choose 1 / 1000, leading to a p-value 
of 0.001 and a z-value of 3.3 (on either side, i.e., 
values below z = -3.3 or above z = 3.3).

To select and remove such outliers, select the “Data”-
tab. You now see the spreadsheet with your data. 
Select “Filter”. This adds a variable and opens an 
input field. Press fx and select MAXABSZ(). It takes 
the maximum of the absolute value of the z-scores of 
several variables. Include all variables inside the 
parentheses, separated with commas, and add < 3.3 
outside the parentheses: 
MAXABSZ(dan.sleep,baby.sleep,dan.grump,
day) < 3.3



  

 

Conditions for parametric tests
strategies for removing outliers:
interquartile range
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IQR > 3

The second strategy is based on how outliers are 
defined in a box plot. You have the central box, 
called interquartile range. The interquartile range is 
from the first (25%) to the third quartile (75%) of 
your data (i.e., if you would sort your variable and 
had N = 100; it would be the 26th to the 75th value). 
This IQR is multiplied with 1.5 and added as 
whiskers above and below the box. Anything 
outside that whisker is regarded an outlier (inner 
fence). We, however, only would like to remove 
extreme outliers (outside the outer fence; IQR > 3).

Write "and" after MAXABSZ, press fx and select 
MAXABSIQR(). It takes the maximum of the 
absolute value of the IQR of several variables. 
Include all variables inside the parentheses, 
separated with commas, and add < 3 outside the 
parentheses. The whole added part looks like: 
and MAXABSIQR(dan.sleep,baby.sleep, 
dan.grump,day) < 3



  

 

Conditions for parametric tests
strategies for removing outliers:
multivariate: Mahalanobis distance (1)
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Before we can do it, we have to add a selection varia-
ble. In order to do so, we choose the tab “Data”, go 
to the header line in our spreadsheet and right-click 
on ID. There we choose “Add variable” and “Insert” 
(under “Data variable”). This creates a variable na-
med “A” which we change into “selSbj”. Then we go 
to the “Filter 1” variable (most to the left) and 
double click on the header line. This opens the field 
where we wrote other filter-commands. We append 
“and selSbj == 1”. The filter expression is now: 
MAXABSZ(dan.sleep,baby.sleep,dan.grump,day) < 3.3 
and MAXABSIQR(dan.sleep,baby.sleep,dan.grump,day) < 
3 and selSbj == 1

selSbj is still empty (hence all the red “X”). We don’t 
want to write “1” one hundred times. We therefore 
just create an empty computed variable, assign “= 
1“ in the input field, copy it’s content to selSbj and 
atferwards delete that variable. You can now 
deselect case by changing “1” into “0”.



  

 

Conditions for parametric tests
strategies for removing outliers:
multivariate: Mahalanobis distance (2)
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The final method for removing outliers is using a 
measure called Mahalanobis-distance. It considers 
whether a combination of your independent 
variables are outliers. Think, e.g., of a 180 cm tall 
person weighing 48 kg. The Mahalanobis distance 
is aiming to find those cases.

The code is actually a one-liner split into 3. It begins 
with “names(which”. “names(which” is a command 
showing you the line number in you data set.

“pchisq” reports the p-value for the chi-squared value 
that the mahalanobis-function returns. To hit the 
threshold, p has to be < 0.001. The Mahalanobis-
function is the distance between the variable-
values of a participant from the mean for each 
variable (squared and summed up), divided by the 
covariance between the variables. The code is on 
MittUIB → Syntax_Outliers_Mahalanobis.R

You can copy-paste it from there.



  

 

Conditions for parametric tests
strategies for removing outliers:
multivariate: Mahalanobis distance (2)
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Again, we did not find any cases that were selected 
as outliers. Therefore, we can leave selSbj as it is 
and don’t have to set any values to “0”.



  

 

Conditions for parametric tests
transforming your data:
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LG10 = LOG10

In certain cases, removing outliers is not sufficient 
because the values over the whole group of 
participants are skewed. On the right hand side, 
you can see examples for how such skewed 
distributions would look like and on the right hand 
side, which transformation could be conducted as 
possible remedy.

Please note that the LG10-function is named LOG10 
in jamovi.
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In order to do such a transformation, select the 
“Data”-tab, go to some place in your spreadsheet. 
Once you press Compute, a new variable is added 
and you will find the window shown at the bottom.

There you press the “fx”-button and select the 
transformation you wish to carry out. I chose 
LOG10 as an example, but SQRT is also available. 
You could also write transformations like 1 / 
dan.grump (or click that in from the variable list).

Once you are satisfied, close the window with the 
arrow in the top-right corner.



  

 

Conditions for parametric tests
Assumption checks (within the regression model):
• Cook’s distance
• Autocorrelation test
• Collinearity statistics: VIF
• Normality: Shapiro-Wilk,

QQ-plot (of the residuals)
• Residual plots: Residuals vs.

Fitted and all DVs and IVs
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In addition to the assumptions we did check in 
preparation for conducting a regression analysis 
(what we did up to now), we can also check further 
assumptions from “within” the model.
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The first two I won’t cover in too much detail. Cook’s 
distance describes for each participant the difference 
between the prediction if the participant is included 
vs. excluded.
This means, first, a regression model is build with all 
participants included. Then, for each participant, one 
after another, that participant is excluded from 
estimating the weights for that model, but that model 
(in which the participant did not contribute to the 
estimation) is used to predict the value for that 
participant. If the result from that model differs 
considerably from those of the first model, the 
participant likely contains outliers. Typically, finding 
values above 1 under max should raise red flags. 
Then you should check for outliers again.
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The autocorrelation test (Durbin-Watson) particularly 
applies when we are dealing with time series. Let’s 
assume we measured job satisfaction over several 
years (using the same questionnaire). The years are 
listed in the rows of our data sheet. We expect that 
those values are correlated (which is denoted as 
autocorrelated). If the Durbin-Watson test gets 
significant we have such a situation. It primarily 
means that our statistics are affected and we should 
mention it as a limitation when reporting our results.



  

 

Conditions for parametric tests
multicollinearity and singularity:
• regression is impossible if IVs are singular (i.e., a 

linear combination of other IVs) or unstable if they 
are multicollinear

• collinearity describes a linear association between 
explanatory variables (i.e. the degree to which one 
explanatory variable can be predicted by a combination of one or 
more other explanatory variables)
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Collinearity or multicollinearity concerns the 
correlation between the independent variables.

I said earlier that regression analyses requires 
independent variables that each are correlated 
relatively high with the dependent variable but 
relatively low among themselves.

In the most extreme case, a variable is singular. That 
situation describes if that variable can be predicted 
as a combination of the other variables. That 
typically makes our estimation fail because certain 
matrix operations are not possible with singular 
matrices.

In a less serious case, multicollinearity, variables are 
very highly correlated among themselves. This has 
a tendency to make our regression models un-
stable (i.e., it will change considerably depending 
on whether certain independent variables are 
included or not and in which order the are 
included).



  

 

Conditions for parametric tests
multicollinearity and singularity:

● tolerance: 1 – Rj² (Rj²: what degree of variance of 
variable j is explained by the other predictor variables)
variance inflation factor (VIF): 1 / tolerance

● (a) VIF < 5 and tolerance > 0.2; (b) the
average of the VIF of all variables should
be close to 1

● variable removal should consider also reliability
and cost of acquisition
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We can assess the amount of multicollinearity by 
using the tolerance and the variance inflation factor 
(VIF). A VIF of above 5 should raise red flags and 
make us consider to exclude that variable. If the 
average of the VIF is much above 1, this should 
also elicit you to further check what variable might 
be the reason for the collinearity.

The VIF assesses the common variance among the 
variables. As a consequence, we may have several 
choices which variable we remove. When deciding 
about which variable we should remove, we should 
also consider how reliable the variable is (and 
rather remove unreliable ones) or how costly the 
acquisition was (we possibly rather would remove a 
variable that did not take so much time and money 
to collect).
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The remaining part of the assumption checks deals 
with the residuals, i.e., the difference between our 
prediction and the real value.

One assumption is that the residuals should be 
normally distributed. That can be checked using the 
Shapiro-Wilk test or visually using the QQ-plot. In 
the plot, the majority of data points should fall on 
(or close to) the main diagonal. Both measures 
indicate that there are no problems with the 
normality of the residuals for the current analysis.
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The next task is to check the scatter plots for the 
residuals. There is a considerable number of them: 
One for the predicted (Fitted) values vs. the 
residuals, shown most to the left. The plots should 
look like a cloud of dots. Our example looks similar 
to the plot described as “assumptions met”. Our 
example on the left doesn’t have a line at where the 
Residuals have the value 0 but the position is 
roughly aligned so that is should be relatively easy 
to compare.

If the residuals were not normally distributed, they 
rather would scatter either above or below the zero-
line instead of being (relatively) equally distributed 
on both sides.

If they were non-linear, we likely would obtain a 
curved shape in the plot.

If homoscedacity (equality of variances) isn’t given 
they would have a wider spread at a certain point 
along that line (it can be left, right, or in the middle).
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all scatter plots should look as if they were randomly 
distributed and not like of the three figures on the 
right side of the previous slide

After we assessed the relation between the residuals 
and our prediction, we do the same for the 
remaining figures (always keeping the examples on 
the previous page in our head in order to detect 
abnormalities).

Left, we see the scatter plot for Residuals vs. Fitted 
again (already checked on the previous page), then 
Residuals vs. the “real” Dependent variable 
(dan.grump), and then the Independent variables 
(dan.sleep, baby.sleep, day). None of the plots 
looks as to raise concerns. All are looking like 
clouds with correlations near 0 and there seem to 
be not any pattern in those clouds. The only 
combination that looks a bit more regular is 
residuals vs. dan.grump. But even that is no reason 
for concern: It is quite normal that we see a bit of a 
linear relation in that plot. The values around the 
mean a typically estimated better whereas the 
residuals get larger towards the ends.
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Initial checks

Check residuals

Linearity
Unusual cases

Scatterplots
(DV → each IV)

Transform data Lack of linearity?

Linearity

Homoscedacity

Independence

Normality

Assumptions met?
No bias?

Model can be
generalized

QQ-plot (residuals)
Shapiro-Wilks

Residual plots

adapted
after
Field (2018)

That was quite an extensive overview. Let‘s come 
back to the overview what we have to check.

Before we start, we should assess normality and find 
and remove outliers. If the variable still doesn’t 
follow a normal distribution we may consider 
transforming it.

Then, we start assembling our regression model. All 
options for possible assumption checks are 
collected within the drop-down-menu named 
“Assumption checks”. The most important of those 
checks are Collinearity diagnostics, Shapiro-Wilk, 
QQ-plot and residual plots where we can assess 
how much our model gives reason for concern. 
There are certain measures (e.g., removing 
variables) to provide remedy.

Either we manage to fulfil all assumptions and can 
whole-heartedly claim that the model can be 
generalized. Otherwise, we have to report what 
gives reason for concern.



  

 

Regression types
and model building
A statistician and a good looking fellow are having
small talk at a party. “What are you doing?”, the
statistician asks. “Modelling”, the good looking guy
replies. “Oh, that‘s interesting”, says the statistician,
“I am modelling too.”

Before we proceed to the next part, you can take a 
breath and check whether only statisticians find that 
joke funny.



  

 

Major types of multiple regression
three analytic strategies:
• standard (b)
• hierarchical (c)
• statistical (d)

differ in how the IVs contribution to
the prediction is weighed
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When doing regression analyses we have the choice 
of three strategies that differ in how they “distribute” 
the contribution of the different independent 
variables. Depending on how many variables you 
have and how much they correlate, you may end 
up with a considerable number of these sections 
denoted with the small letters in the top-left figure.

You will also see that the areas that are marked grey 
differ between the figures denoted (b), (c) and (d). 
That indicates that those three analytic strategies 
differently weigh the contributions of the individual 
independent variables.



  

 

Major types of multiple regression
standard regression:
• enters all IVs at once in the equation
• only unique contributions are considered

(may make the contribution of a variable
look unimportant due to the correlation
with other IVs, e.g., IV2)
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When using “standard”, which is the default in jamovi, 
only the parts where the overlap is unique between 
a independent variable and the dependent variable 
are considered.

Other parts where two independent variables 
correlate are not considered. We could also say 
that only those contributions of one variable are 
taken into account that are not shared with another 
variable.



  

 

Major types of multiple regression
hierarchical regression:
• enters IVs in an order specified

can be entered separately or in blocks
according to logical or theoretical conside-
rations, e.g. experimentally manipulated
variables before nuisance variables, the
other way round, or comparing different sets

• additional contribution of each IV is considered
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Hierarchical regression is the method we will 
describe in more detail in the later part of this 
section.

How the independent variables are added to and 
weighed in the model is subject to theoretical 
considerations.

That is, the independent variable which is added first, 
should have been selected on theoretical grounds 
to be the one which is regarded most explanatory. 
The ones that are added afterwards should follow 
in the order of their assumed importance.

Typically, the question asked when adding a new 
variable takes the form of: Does it make a 
difference (i.e. does it result in better prediction) if I 
add variable X as predictor.



  

 

Major types of multiple regression
hierarchical regression:
• enters IVs in an order specified

can be entered separately or in blocks
according to logical or theoretical conside-
rations, e.g. experimentally manipulated
variables before nuisance variables, the
other way round, or comparing different sets

• additional contribution of each IV is considered
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By ordering variables after the relative “importance” 
you give them in your hypotheses, you typically are 
most interested to see whether your data support 
your main hypothesis, afterwards you would assess 
additional hypotheses and in the end check 
whether there were any further variables that you 
wished to control for because you regarded them 
nuisance variables exerted an influence.

Mathematically, this is reflected that the contribution 
of the first variable is weighted highest, the second 
one only contributes aspects that are not already 
considered by the first variable and so on.



  

 

Major types of multiple regression
hierarchical regression:
• top: all variables entered at once

in the equation
• bottom: define the order with which

the variables are included in the
model (based upon theor. consid.)
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An example for how such a hierarchical regression is 
conducted in jamovi can be seen on that slide. We 
use the dataset with the relation between Dan’s 
grumpiness, the amount of Dan sleep, of the babies 
sleep and how old the baby was.

It would be logically to hypothesize that for Dan’s 
grumpiness, the amount Dan is sleeping is most 
predictive (in the end, it happens within the same 
person). Afterwards, it could be assumed that the 
amount to which the baby is sleeping might have 
the second largest influence, with the age of the 
baby coming last. In order to test those hypotheses, 
we would assign dan.grumpy to “Dependent 
variables” and all variables that we expected to be 
possibly help to explain Dan’s grumpiness to 
“Covariates” (i.e., the variables dan.sleep, 
baby.sleep and day).



  

 

Major types of multiple regression
hierarchical regression:
• top: all variables entered at once

in the equation
• bottom: define the order with which

the variables are included in the
model (based upon theor. consid.)
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Then we go to the drop-down-menu “Model Builder”. 
Per default, all variables are assigned to one block, 
assessing the contribution of all variables at the 
same time (but only considering the unique 
contributions of each variable, see the figure under 
“standard regression” three slides back).

We remove the variables that we expect not to make 
the highest contributions (i.e., we remove 
baby.sleep and day). Once we did that, only 
dan.sleep is assigned to “Block 1”. We choose “Add 
New Block”, and assign baby.sleep to “Block 2”, 
and “Add New Block” again, assigning day to 
“Block 3”.

Then open the drop-down-menu “Model Fit” and tick / 
switch on “AIC”, “BIC”, and “Overall Model Test”.



  

 

Major types of multiple regression
hierarchical regression:
• models defined in the

model builder are
compared against
each other

• the bottom table indi-
cates whether a new
model increases the
quality of prediction
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After these preparations, we can now (theoretically) 
describe three different possible criteria to select 
which of the different blocks or (models as they are 
called in the output) makes an impact with the 
variables in it. I will say a little about WHY we use 
these criteria before continuing with taking them 
into praxis for our parenthood data set.

Typically the decision is made by weighing three 
factors: (1) The model as a whole has to be 
significant – you will find that information as F- and 
associated p-value in the table “Model Fit 
Measures”. If the whole model (listed with the 
model number in the table) is not significant, then 
there is no need for further considerations.



  

 

Major types of multiple regression
hierarchical regression:
• models defined in the

model builder are
compared against
each other

• the bottom table indi-
cates whether a new
model increases the
quality of prediction
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(2) Among the models that are significant, it is 
appropriate to choose the model which is most 
informative and parsimonious. The claim to be 
informative and parsimonious is denoted as 
Ockham’s razor, saying “Entities should not be 
multiplied without necessity”. Applied to a 
regression model that means that you should not 
add predictors just because they lead to a small 
increase in your R². There are measures that help 
to assess the amount of information contained in 
your models: jamovi implements AIC and BIC 
(Akaike and Bayes Information Criterion; both can 
be found and selected in the drop-down menu 
“Model Fit”).



  

 

Major types of multiple regression
hierarchical regression:
• models defined in the

model builder are
compared against
each other

• the bottom table indi-
cates whether a new
model increases the
quality of prediction
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cont. (2): A problem of regression models is that it is 
possible to increase the likelihood (or the goodness 
of fit) for that model by adding variables. However, 
adding variables may result in overfitting (i.e., the 
model works very well for that specific set of data, 
but doesn’t generalize because it is so much 
“tailored” to that specific data set). Another matter is 
that the more predictors you include in your model 
(i.e., the more complex your model is) the more 
difficult it is to interpret it or to explain it. Both AIC 
and BIC try to resolve that by introducing a penalty 
term for the number of parameters in the model 
(the penalty term is larger in BIC). For both of them 
is true: The LOWER the value, the more 
appropriate is the model. Typically, both of them 
point in the same direction.



  

 

Major types of multiple regression
hierarchical regression:
• models defined in the

model builder are
compared against
each other

• the bottom table indi-
cates whether a new
model increases the
quality of prediction
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(3) Finally, there are F- and associated p-values that 
indicate whether the changes made from the first 
(simpler) to the second (more complex) model are 
significant. Those values are listed in the table 
“Model Comparisons”. If, e.g., the comparison of 
Model 2 – Model 1 is significant then Model 2 
makes some contribution to explain your data IN 
ADDITION to what already was covered by Model 
1.
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hierarchical regression:
• models defined in the

model builder are
compared against
each other

• the bottom table indi-
cates whether a new
model increases the
quality of prediction
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We now apply these principles to our parenthood 
data set. (1) When checking the table “Model Fit 
Measures”, we see that all three models are highly 
significant (p < 0.001 for all). No model already has 
to be excluded based on that it was not significant

(2) When checking the values for AIC and BIC, both 
indicate the same: model 1 is the most parsimo-
nious model (and receives the lowest value).

(3) When we look at the comparison between the 
models in the table “Model Comparisons”, it turns 
out that neither the comparison of Model 2 to Model 
1 is significant (p = 0.969), nor is the comparison 
between Model 2 and Model 3 (p = 0.774). Both fail 
statistical significance by quite some margin: Nei-
ther does adding baby.sleep provide further power 
to predict Dan’s grumpiness (in addition to what is 
already explained by Dan’s amount of sleep), nor 
does age in addition to the previous model (with 
dan.sleep and baby.sleep as predictors).



  

 

Major types of multiple regression
statistical regression:
• controversial; order of entry (or possibly

removal) specified by statistical criteria
• three versions: forward selection, back-

ward deletion, stepwise regression
• tendency for overfitting → requires large and 

representative sample; should be cross-validated 
(R² discrepancies indicate lack of generalizability)
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A final type of regression approach is called 
statistical. It is controversial given that you don‘t 
analyse your data based on hypotheses but use 
statistical criteria to determine which independent 
variables are chosen and why.

jamovi does not implement automated variable 
selection methods even though most other 
statistical programmes (e.g., SPSS) offer it and 
even though it would have been relatively simple to 
implement.

Statistical regression is a bit of a poisoned chalice as 
you are made believe that these methods 
objectively select appropriate models. However, 
these methods are quite often used as an excuse 
for thoughtlessness, caused by not having to think 
carefully about which predictors you add to the 
model and what the theoretical basis for their 
inclusion might be.



  

 

Major types of multiple regression
statistical regression:
• controversial; order of entry (or possibly

removal) specified by statistical criteria
• three versions: forward selection, back-

ward deletion, stepwise regression
• tendency for overfitting → requires large and 

representative sample; should be cross-validated 
(R² discrepancies indicate lack of generalizability)
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There are three selection approaches: Forward 
selection, which involves starting with no variables 
in the model, testing the addition of each variable 
using a chosen model fit criterion, adding the 
variable (if any) whose inclusion gives the most 
statistically significant improvement of the fit, and 
repeating this process until none improves the 
model to a statistically significant extent.

Backward elimination involves starting with all 
candidate variables, testing the deletion of each 
variable using a chosen model fit criterion, deleting 
the variable (if any) whose loss gives the most 
statistically insignificant deterioration of the model 
fit, and repeating this process until no further 
variables can be deleted without a statistically 
insignificant loss of fit.

Stepwise regression is a combination of the above, 
testing at each step for variables to be included or 
excluded.
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statistical regression:
• controversial; order of entry (or possibly

removal) specified by statistical criteria
• three versions: forward selection, back-

ward deletion, stepwise regression
• tendency for overfitting → requires large and 

representative sample; should be cross-validated 
(R² discrepancies indicate lack of generalizability)
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There are two central issues with statistical 
regression: One is that it may result in overfitting 
(i.e., the model works very well for a specific set of 
data, but doesn’t generalize because it is so much 
“tailored” to that data set).

One way to address this issue is to cross-validate 
your model. For doing so, you would (ideally) 
collect two different data sets and then use either of 
these to estimate your regression model. If there 
aren’t any huge discrepancies in the R²-values of 
these two estimated models (and if you on top of 
that got a similar selection of variables with similar 
regression coefficients included in your model) then 
you can be reasonably sure that the model you got 
would also generalize to other cases.
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The other issue is that very little agreement exists on 
what represents appropriate model selection 
criteria. Available methods include: F-tests, AIC, 
BIC, NML (Normalized Maximum Likelihood) or (if 
you’re a Bayesian) posterior odds ratios.

When using the hierarchical regression, we weighed 
two F-tests and the AIC / BIC for making our 
decision. Combining and weighing them reflects 
that neither is sufficient as a single criterion.



  

 

Major types of multiple regression
choosing regression strategies:
• standard: simply assess relationships (atheoretical)

what is the size of the overall relationship between IVs and DV?
• hierarchical: testing theoretical assumptions or explicit hypotheses (IVs 

can be weighted by importance)
how much does each variable uniquely contribute?

• statistical: model-building (explorative, generating hypotheses) rather than 
model-testing
can be very misleading unless based on large, representative samples
can be helpful for identifiying multicollinear / singular vars.
what is the best linear combination of variables / best prediction?
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The three approaches differ a little with regards to 
what questions you can answer with them and what 
possible pitfalls are.

The first approach, standard, isn’t based upon any 
theoretical considerations but simply answers the 
question of which size the overall relationship 
between independent and dependent variables is.

With the second approach, hierarchical, you can 
directly explore hypotheses about the relative 
contribution of each variable. This approach is 
driven by theories that you have about the effect 
each independent variable has on the outcome.

In the last approach, your model building is based 
upon your data. It can serve explorative purposes 
and generate hypotheses but isn’t really suitable for 
hypothesis testing. It requires large samples and is 
subject to possible overfitting. However, it can be 
helpful when it is required to identify multicollinear 
or singular variables that should be removed.



  

 

Summary and
literature

We will end with a brief summary and an overview of 
the literature for this topic.



  

 

Summary
● introduction
● principles and background: mathematical background, 

choosing IVs, required sample sizes
● how to conduct a linear regression?
● assumptions for linear regressions: initial checks, 

checks within a regression model
● regression types and model building: standard, 

hierarchical, statistical
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We started with introducing regression analyses in 
relation to other statistical methods introduced in 
the course.

Then, we discussed the mathematical background, 
described criteria for choosing independent 
variables and recommended sample sizes.

Afterwards, we turned to a demonstration how to 
conduct a linear regression.

Next we discussed assumptions for regression 
analyses and how they can be checked.

Then, we spoke about three regression approaches, 
and introduced one – hierarchical – more extensive 
with a practical example.



  

 

Literature
Navarro, D. J., & Foxcroft, D. R. (2022). Learning 

statistics with jamovi. https://doi.org/10.24384/hgc3-7p15 
(Ch. 12; p. 281 – 326)

Aron, A., Coups, E. J., & Aron, E. (2013). Statistics for 
psychology (6th ed). Pearson. (Ch. 11, 12; p. 487 – 5964
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Main literature for the lecture was chapter 12 of the 
jamovi-book (Navarro & Foxcroft, 2022).

For an alternative way of explaining or if you are 
interested in linear regression analyses would be 
conducted in SPSS, you can read chapter 11 and 
12 in Aron, Aron and Coups (2013).

https://doi.org/10.24384/hgc3-7p15


  

 

Thank you for your
interest!

Thank you very much for you interest! If you have 
any questions, you can use the discussion for this 
lecture on MittUiB.
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