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In today’s lecture, I would like to give an introduction 
into the analysis of variance.



  

 

Overview
• introduction
• history and some mathematical background
• ANOVA with one factor in jamovi
• ANOVA with more than one factor in jamovi
• ANCOVA in jamovi
• ANOVA for repeated-measurements in jamovi
• for all: assumption checks (normality and variance 

homogeneity), effect sizes, and post-hoc tests
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We will begin the lecture with contextualizing the 
ANalysis Of VAriance (ANOVA), using the 
distinction of categorical and continuous variables 
that I used before.

Afterward, we will turn to a bit of history of the ANOVA 
plus a step-by-step introduction into how an ANOVA 
is calculated manually. Even though it is a bit 
tedious, I highly recommend that you follow this 
introduction since it makes it easier to understand 
the principles (there is an accompanying spread-
sheet with the calculations).

Afterwards, we will turn to how different kinds of 
ANOVAs are calculated in jamovi. We will begin 
with a simple ANOVA with one factor, and then 
extend it into an ANOVA with two factors (and their 
interaction).
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Afterwards we will introduce the analysis of covari-
ance, where we control for a continuous variable 
that may represent a nuisance variable (a typical 
example is age with e.g., accumulating knowledge 
or reaction times getting slower). The point is to re-
move the influence of that variable from our model.

Finally, we will turn to the ANOVA for repeated 
measurements. Prime examples where it is used 
are for comparing different conditions that were 
administered to one participant in the course of an 
experiment. Another common use case is an 
intervention with a pre-, post- (immediate after the 
intervention) and follow-up-measurements (some 
time after the intervention; for checking the stability 
of the effect).

There are three common, reoccurring themes that 
apply to all ANOVAs introduced here: Assumption 
checks, typically normality and homogeneity of 
variances, effect sizes, and post-hoc tests.



  

 

Introduction

In the very brief first part I would like to embed the 
analysis of variance within the same framework of 
categorical vs. continuous predictor / independent 
and outcome / dependent variables.

Related to this distinction is the one between 
difference and relation hypotheses.

Finally, for the ANOVA, we often encounter within-
subject designs (e.g., when following a participant 
over time or when administering different conditions 
within an experiment to the same participant).



  

 

Categorical vs. continuous vars.
• categorical variables contain a limited number of 

steps (e.g., male – female, experimentally 
manipulated or not, level of education)

• continuous variables have a (theoretically unlimited) 
number of steps (e.g., body height, weight, IQ)

• ANOVA (this session) is for categorical predictors, 
Correlation and regression analyses (lecture given 
two weeks ago) is for continuous predictors
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I will (yet another time) use the distinction between 
categorical and continuous variables to contextua-
lize the analysis of variance.

Categorical variables encompass the variables from 
the two measurement levels nominal and ordinal 
(for an more extensive overview on measurement 
levels, see the crash course).

Continuous variables encompass the two variable 
levels interval and ratio.

For ANOVAs we have (mainly) categorical predictor 
(independent) variables and continuous outcome 
(dependent) variables. I used “mainly”, since it is 
possible to control for the influence of continuous 
predictors in the Analysis of Covariance (as special 
“flavour” of the ANOVA). For correlation and regres-
sion analyses we use exclusively continuous pre-
dictors.



  

 

Categorical vs. continuous vars.
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Dependent variable

Categorical Continuous

Independent
variable

Categorical
Χ² test

(chi-squared)
t-test
ANOVA

Continuous
Logistic 

regression

Correlation
Linear 

regression

Most classes of multivariate methods (ANOVA as well 
as linear and logistic regression) are based upon 
the General Linear Model. ANOVA is covered quite 
extensively in this lecture, linear regression was in 
the previous lecture.

Both ANOVAs and regression analyses stand quite 
central in our methods repertoire. ANOVAs are 
typically used to analyse data from experiments 
(where we manipulated one or more factors, 
representing the categorical variables), whereas 
linear or logistic regression models are often used 
to analyse data acquired with questionnaires. They 
differ in that linear regression has a continuous 
variable as dependent variable (e.g., quality-of-life, 
job satisfaction), for logistic regression it is 
categorical (e.g., clinical vs. control group).

Χ² tests were introduced in the refresher session.



  

 

Difference vs. relation hypotheses
• difference hypotheses explore whether there is a difference 

between the steps of one (or more) independent and a 
dependent variable

• relation hypotheses explore whether there is a relation 
between one (or more) independent and a dependent 
variable

• → causality can only be inferred if the independent variable 
was manipulated before the outcome was measured
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In the lecture on linear regression, we were dealing 
with hypotheses regarding relationships between 
variables and how they could be used to predict a 
certain behaviour of a person based upon those 
relations. For example, we could try to predict 
performance in the job based on job satisfaction, 
support from superiors, etc.

In today’s lecture we turn to a method where we are 
most interested in evaluating differences. Typically, 
we use this method to analyze data from experi-
ments. Here we are most interested to see whether 
an experimental manipulation gave rise to an effect 
that is statistically significant.

Given that we typically manipulate one or more 
independent variables before we measured the 
outcome when using experimental designs, such 
designs generally allow us to make claims about 
causality.



  

 

Within vs. between subject vars.
• within-subject variables are measures acquired 

from the same person (e.g., administering the 
same test before and after treatment; different 
experimental conditions; EEG / MRI data)
→ idea that the “performance” or “properties” that 
characterize the person stay the same

• between-subjects variables are variables that 
distinguish between individuals (e.g, male-female)
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Another  distinction that is important is whether one 
or several measurements per participant are 
assessed using the ANOVA.

For the three “classical” between-subject-types of 
ANOVA (ANOVA with one factor, ANOVA with 
several factors, ANCOVA), we are dealing with one 
dependent variable per participant (between-
subject variables).

In contrast, what constitutes the dependent variables 
for the within-subject type of ANOVAs (for repeated 
measurements) are several measurements that are 
arranged into factors (e.g., pre, post, follow-up). 
Such approach can reduce the amount of the vari-
ation we can’t explain with our model by controlling 
for individual variation. This is done by considering 
the levels of the repeated-measurement factors as 
deviations from the mean of each individual. There-
by we can control for individual differences.



  

 

Principles and
background

Let’s start our journey with some definitions and 
history before learning a bit about the mathematical 
background of the Analysis of Variance.



  

 

Some history, definition
• introduced by Sir Ronald Fisher in 1921

based upon earlier ideas of Laplace and
Gauss

• compare two (or more) means to see
whether they differ from another

• evaluates the differences among means
relative to the dispersion of the sampling distribution
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“The analysis of variance”, usually referred to as 
ANOVA, was first publicized as a method by Sir 
Ronald Fisher (top) in 1921.

That said, there were antecedents that introduced 
concepts such as hypothesis testing, the 
partitioning of sums of squares, experimental 
techniques and the additive model as early as in 
the 18th century. For example performed Laplace 
(bottom left) hypothesis testing in the 1770s, and 
Laplace and Gauss (bottom right) developed the 
least-squares methods around 1800.
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ANOVA is a form of statistical hypothesis testing 
heavily used in the analysis of experimental data. A 
test result (calculated from the null hypothesis and 
the sample) is called statistically significant if it is 
deemed unlikely to have occurred by chance if the 
null hypothesis were true.

In the typical application of an ANOVA, the null hypo-
thesis is that all groups (µ

1
 … µ

k
) are random 

samples from the same population. For example, 
when studying the effect of different treatments on 
similar samples of patients, the null hypothesis 
would be that all treatments have no effect and 
therefore there is no difference between groups.

Rejecting the null hypothesis is taken to mean that 
the differences in observed effects between 
treatment groups are unlikely to be due to random 
chance.
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What distinguishes the ANOVA from a t-test is that it 
can assess more than two groups at once 
(whereas one can’t do more than one-by-one 
comparisons with a t-test) and it is also possible to 
assess more complex hypotheses encompassing 
several factors.



  

 

Some mathematical background
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As I mentioned on one of the introductory slides, are 
both regression and the analysis of variance (ANO-
VA) based upon the same underlying model, the 
General Linear Model. In the case of a regression 
(left), we try to fit a regression line that represents 
how much change in the dependent variable goes 
along with a certain change in the independent 
variable (slope). The slope is adjusted such that the 
squared deviations (distance of the blue dots from 
the regression line) are minimized.

For the ANOVA (right), we use the means of the diffe-
rent groups in the model as predictors. Using those 
means “automatically” minimizes the squared de-
viations (as those deviations are always distances 
from the mean).

We then compare those squared deviations (as an 
indicator of what our model can’t predict) to the 
variance that can be predicted by our means or the 
regression line



  

 

Some mathematical background
Two ways of calculating the variance:

                              equals

Splitting the sum of squares:

                          =                             +

df:     N – 1                    G – 1                      N – G
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(Y ik− Ȳ )2 SSb = ∑
k=1

G
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We start with an example data set (Clinicaltrial.omv) 
for some demonstration of the mathematical 
principles behind an ANOVA. The dataset contains 
two factors. The first factor (drug) compares the 
effect of a new antidepressant drug called 
Joyzepam to an existing drug called Anxifree and a 
placebo. The second factor (therapy) assesses 
whether the drug effects are modulated by provi-
ding CBT at the same time (vs. receiving no treat-
ment) in combination with therapy (no vs. CBT).

We will focus on the first factor (drug) for our demon-
stration. We start with the null hypothesis that all 
drugs have the same effect – H0: μP = μA = μJ. Our 
alternative hypothesis says the opposite, the three 
levels of drugs differ with respect to their means – 
H1: not μP = μA = μJ, maybe easier to understand in 
the form: μP ≠ μA OR μP ≠ μJ OR μA ≠ μJ. “Analysis 
of variance” indicates that are we operating with 
variances when assessing these differences.
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(Y ik− Ȳ )2 SSb = ∑
k=1

G
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Typically, the variance is obtained by calculating the 
squared distance of of the score of each individual 
to the mean of the whole sample (Yp – Y)². Although 
for some participants (with scores below the mean), 
the difference is negative, by squaring it, all values 
become positive. These squared distances are then 
summed them up over all participants.

We now change this formula slightly by assigning 
each participant to one of G levels of the factor that 
we would like to evaluate. For our factor drug, the 
first group (k = 1) would be those treated with Anxi-
free, the second group (k = 2) would receive Joy-
zepam and the third group (k = 3) the placebo.

Within each group, the participants run from i = 1 to 
the number of participants in that group (Nk). For all 
participants, the squared differences are summed 
up, first within a group (the sum sign with the index 
i), later these sums are further summed up over 
groups (the sum sign with the index k).
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What we just calculated is the variance. Variance de-
notes the average of the squared distance of each 
participant from the sample mean. It results from 
summing up the squared distances and then divi-
ding it by the number of participants (1 / N).

For the ANOVA, we operate with a concept which is 
called sum of squares. It is very similar to the 
variance, except from that we just sum up the 
values (and not divide them by the number of 
participants). The variance is therefore equivalent 
to the whole variation denoted as total sum of 
squares (Sstot).

This total sum of squares can now be “split” into the 
variation which is due to the group membership 
(called between groups – SSb – because it 
“compares” the means of the different groups to the 
mean of the whole sample) and the variation within 
the group (SSw – comparing the distance of each 
group member from the group mean).
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 We assume that if the groups differ recognizable, 
SSb would be relatively large in comparison to Ssw.

Another way of describing the relation between SSb 
and SSw is that SSb is the part of the variation that 
we can explain by our drugs having different effects 
on mood (leading to different means for each drug).

In contrast is SSw the part of the variation that is left 
over and that we can’t explain (“the remaining 
variation within the group”).
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To calculate the F-ratio (explained two slides ahead), 
we set these sums of squares into relation to 
(divide them by) their degrees of freedom.

Those are N – 1 for the total sum of squares, G – 1 
for the sum of squares between groups and N – G 
for the sum of squares within groups.

The degrees of freedom follow a certain rationale: 
We start with that each participant in our sample 
provides a data point, i.e., one little bit of “freedom” 
that contributes to the variation.

In the whole sample, we “fixed” one parameter, the 
sample mean (Y). This one parameter is our best 
estimate to describe the characteristics in our 
sample. This makes sense since all participants 
have – on average – the same  distance from the 
mean. Therefore, in our whole sample, we end up 
with N – 1 degrees of freedom.
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For our group means and the sum of squares bet-
ween groups. If we have G different means we 
consider, so can we describe them most 
“economically” as distance, e.g., from group 1 to 
group 2, group 1 to group 3, and so on. For 3 
groups we need at least two such distances to 
describe the relation of the group means. More 
generally, we need G – 1 degrees of freedom.

Finally, we have the sum of squares within groups. 
We start again with the number of our participants 
(since those provide the variation). However, we 
already have “used” two classes of means to 
describe our sample: (1) the mean of the whole 
sample (df = 1), and (2) the distances of means 
between our groups (df = G – 1). Therefore, our 
degrees of freedom are df = N – (G – 1) – 1. With 
resolving the parentheses, the – 1 inside the paren-
theses becomes positive:  df = N – G + 1 – 1 = N – 
G (as + 1 and – 1 cancel each other out).
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F=
SSb/df b
SSw /df w

Now we are ready for our final bit, the F-ratio. To 
calculate it we set the sum of squares between 
groups divided by the degrees of freedom between 
groups (G – 1) into relation to the sum of squares 
within groups divided by the degrees of freedom 
within groups (N – G; set into relation means that 
we divide them through each other). Remember 
that the between groups variation was the part we 
can explain, the within groups variation that part we 
can’t explain.



  

 

Some mathematical background
Analysis of variance in one glance:

see Clinicaltrial – Step-by-step.xlsx on MittUIB
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On the current slide, all required pieces of information 
for calculating an ANOVA are collected. For the p-
value denoted as “complicated” there exists an 
Excel-function as well as the opportunity to look the 
value up from a table with critical F-values.

For demonstrating the calculations, I created an 
Excel-file (Clinicaltrial – Step-by-step.xlsx; sheet 
“One-way ANOVA”) together with a video 
explaining it. Both can be found on MittUiB.



  

 

ANOVA
with one factor
in jamovi

For most of the following analyses we will use the 
clinicaltrials-data set that we already used for our 
step-by-step demonstration on the previous slides.

It contains two predictor variables drug and therapy 
and one outcome variable mood.gain, and 
assesses which effect different pharmocological 
(drug) and psychological interventions (therapy) 
have on mood (mood.gain).



  

 

Equivalence of t-test and F-test
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Before we really get into ANOVAs in jamovi, I would 
like to start with a brief demonstration of the equi-
valence of the t-test and the F-test. We start with 
clicking on “t-test” in the icon bar, selecting “Inde-
pendent Samples t-test”, and assign mood.gain to 
“Dependent Variables” and therapy to “Grouping 
Variables”.

We continue by clicking on “ANOVA” in the icon bar, 
select “ANOVA”, assign mood.gain to “Dependent 
Variable” and therapy to “Fixed Factors”.

What we can see is that the p-values are identical to 
the fourth decimal. What we also can see is that t-
value (1.307) and F-value (1.708) are related by a 
square (from t to F; 1.307² = 1.708) or square root 
(from F to t; √1.708 = 1.307) relation. Why this is 
the case becomes clear if we consider what t- and 
F-statistic are based upon: t is derived from the 
standard deviation (s), F from the variance (s²). 
Standard deviations squared give the variance.



  

 

ANOVA with one factor in jamovi
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However, when the number of levels of a factor we 
wish to assess is higher than two or if we have 
more than one factor, we have to use the ANOVA.

We first begin with «replicating» the analysis we 
conducted «by hand» using LibreOffice Calc 
(Excel).

For doing this, we create a new ANOVA using the 
button «ANOVA» in the icon bar and assign 
mood.gain to «Dependent Variable» and drug to 
«Fixed factors». Furthermore, we tick η² and ω² 
under «Effect sizes».

Before we have a proper look at our results, it is wise 
to check whether all assumptions for running an 
ANOVA are fulfilled. We need to consider 
independence, normality, and homogeneity of 
variances. We therefore tick «Homogeneity test», 
«Normality test», and «Q-Q plot» from the drop-
down-menu «Assumption checks».



  

 

ANOVA with one factor in jamovi
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 + independence

The independence assumption can’t be tested but 
has to be ensured via experimental design. It 
demands that all measurements in our sample 
have been collected without any “relationship to” 
any of the other ones. Situations with clear viola-
tions of this demand, are e.g., such with experimen-
ter effects: Let’s assume that an experimenter had 
a certain behaviour or showed certain expectancies 
when collecting the data to which the participants 
reacted. As a consequence, the data collected by 
that experimenter would be related and would differ 
from data collected by another experimenter.

Another situation where the independence assump-
tion is violated, this time by decision, is for repea-
ted-measures designs, where each participant in 
appears in more than one condition. In such case, 
we need to use a special class of  ANOVA, called 
repeated measures ANOVA (covered later in this 
lecture).



  

 

ANOVA with one factor in jamovi
• assumptions I:

normality and
possible causes for
normality violations
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Normality is a key requirement of any statistical 
analyses since any of the distributions that we use 
to test our models (t, F, etc.) rely on the assumption 
that the data that we use in our models follow a 
normal distribution.
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To assess normality it is also sensible to carry out a 
further analysis before our ANOVA. Using 
«Descriptives», it should be checked whether our 
dependent variable mood.gain is normally 
distributed. Use the Shapiro-Wilk test and the Q-Q-
plot for assessing that.

Within our ANOVA, we can assess the table «Nor-
mality test (Shapiro-Wilk)» and the Q-Q plot. These 
tests give no indication for concern either that resi-
duals may deviate from a normal distribution: The 
Shapiro-Wilk test is not significant (p = 0.605), and 
the points in the Q-Q-plot don’t deviate visibly from 
the diagonal line for the residuals (bottom right).

The results for the dependent variable carried out 
with the Descriptive statistics analysis before the 
ANOVA revealed the same pattern (no significance 
for Shapiro-Wilk, normal Q-Q-plot) but it is not 
shown here because it did not give indication for 
concern.
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Homogeneity of variance requires that the 
variances at each level of the factors we use in our 
model are similar. If they are not, as shown on the 
right-hand side, this would affect our within-groups 
square sum which again becomes part of the F-
ratio (see slide 19). This F-ratio is used to the test 
our model for significance (and thereby would 
variance inhomogenity likely render our statements 
about the model’s significance invalid).
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To assess the homogeneity of variance (sometimes 
also called homoscedasticity), we open the drop-
down-menu «Assumption checks» another time 
and tick «Homogeneity test». It is assumed that 
we’ve got only one value for the population 
standard deviation (i.e., σ), rather than separate 
values for each group (i.e., σk). That is, the different 
values for σk are assumed to be similar to σ.

The Levene’s test assessing those differences and 
whether the assumption of homogeneity is violated, 
is not significant (p = 0.266).
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There is one last caveat with assumption checking: If 
the sample size is large then a significant Shapiro-
Wilk or Levene’s test may in fact be a false positive. 
With large numbers, the assumed measurement 
error on which our statistics is based becomes 
quite small. As a consequence, relatively small 
deviations might cause a significant result.

For normality, we have a the opportunity to double-
check this using the Q-Q-plot. If the points don’t 
deviate much from the diagonal line, we can report 
this and use this as a justification why we 
“disregarded” a significant Shapiro-Wilk test.

For the homogeneity of variances one option might 
be to break down our design so that it just contains 
one factor and to test this factor using the One-way 
ANOVA with Welch’s correction (described later).

For either of the two assumption violations there is 
also the opportunity to use the non-parametric 
alternative Kruskal-Wallis (also described later).
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Finally, we are sure that our assumptions are met 
and we can have a closer look at our main results. 
They reveal that the effect of drug is statistically 
highly significant (p < 0.001).

Apart from significance, we are interested in whether 
the effect also has practical significance by 
checking the effect sizes.

η² is a measure of what proportion of the variance in 
the outcome variable (mood.gain) we can explain 
using our model, i.e., in terms of the predictor 
(drug): η² = SS

b
 /  SS

tot
 = 3.45 / 4.85 = 0.713

The η²-value is very closely related to the concept of 
R² that we discussed in linear regression, and has 
an equivalent interpretation: A value of η² = 0 
means no relationship at all between the two, 
whereas a value of η² = 1 means that the 
relationship is perfect.
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There are recommendations to use ω² instead 
because that measure is less biased when having 
small sample sizes. You can get ω² by using the 
respective tick box in jamovi.

The calculation of ω² is a little more complicated:
ω² = (SS

b
 – df

b
 · MS

w
) / (SS

tot
 + MS

w
)

  = (3.45 – 2 · 0.09) / (4.85 + 0.09)
  = 3.27 / 4.94 = 0.662

Whereas η² is more intuitive, ω² corrects for small 
sample sizes and the bias that we collected 
measurements from a sample while we try to make 
statements about a certain relationship within the 
population. However, still, the interpretation follows 
the same rationale as R² in the linear regression.

Cohen (1992) regards correlation coefficients of 0.5 
as large effect (r/R = 0.50 → r²/R² = 0.25). Both η² = 
0.713 and ω² = 0.662 are far above that and 
represent very substantial effect sizes and high 
practical relevance in addition to significance.
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If we compare the output we obtain to the one we 
earlier calculated in LibreOffice, we see that the 
values are identical to the last decimal. I obviously 
put in enough concentration when creating those 
calculations (and some time for finding the 
mistakes… ;-).

One difference though is the header of line of the 
tables. It is denoted as “between” groups variance 
in the spreadsheet and corresponds to the effect 
that the independent variable drug has on the 
dependent variable mood.gain in jamovi. What is 
called the within groups variance corresponds to 
the “leftover” or unexplained variability called the 
Residuals.
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In our analysis, we pooled the variance. That is, we 
can’t determine which difference in mean scores for 
the different drugs was decisive for being able to 
reject the H0 for our model.

Our null hypothesis contained of three parts:
H0: μP = μA = μJ 

We could instead also write it like:
H0: μP = μA AND μP = μJ AND µA= μJ

This results in seven possible options why the test 
became significant. We often have interest in 
determining which of these seven options was 
responsible. To get a clearer answer, it might help 
to run some tests, denoted as post-hoc tests.
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Basically, what we do is to run three separate t-tests 
for each pairs of means: placebo vs. Anxifree, 
placebo vs. Joyzepam, Anxifree vs. Joyzepam. To 
do this in jamovi, go to the drop-down-menu «Post 
Hoc Tests», move the variable drug across from the 
left into the variable box on the right, and then tick 
the ‘No correction’, “Tukey”, “Scheffe”, “Bonferroni” 
and “Holm” checkboxes.

This will produce a neat table showing all the 
pairwise t-test comparisons among the three levels 
of the drug variable (please note that I divided the 
table so it looks different from how it appears in 
jamovi).

Of the correction options, “Bonferroni” and “Holm” are 
easier accessable, therefore I will explain them, 
whereas “Tukey”, and “Scheffe” are more 
complicated to calculate and I will just say what 
they are good for.
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When running post-hoc-analyses, a lot of care is 
required: Each individual t-test is designed to have 
a 5% Type I error rate (i.e., α = 0.05) and our 
analysis included three of these tests. For 10 
different groups / levels of the variable, there would 
have been 45 “post hoc” t-tests (and you’d expect 2 
or 3 of them to come up significant by chance 
alone; 45 · 0.05 = 2.25). In addition, the 
experiment-wise α that we would have to accept, 
would raise to about 90%. I put this calculation into 
Clinical trial – Step-by-step.xlsx (sheet: “Alpha error 
inflation”).

The solution is to introduce an adjustment to the p-
value, which aims to control the total error rate 
across all tests we conduct.
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The simplest of these adjustments is called the 
Bonferroni correction. All raw p-values are 
multiplied by the number of comparisons we 
conducted (3 in the current analysis; cf. the 3 lines 
in the Table “Post-Hoc Comparisons – drug”).

For example, for the comparison between «anxifree» 
and «joyzepam» the original (uncorrected) p-value 
p = 0.0006 is multiplied by 3 resulting in p = 0.0017 
(0.0006 · 3 = 0.0018 – the difference is due to 
some rounding error).
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Often, the Holm correction is used instead. The idea 
behind the Holm correction is to assume that the 
tests are done sequentially. We would start with the 
comparison were we obtained the smallest p-value 
and multiply that with the total number of compari-
sons – 3 – then proceed to the next smaller p-value 
and multiply that with 2 and multiply the largest p-
value with 1 (i.e., leave it as it is).

For our analysis, the smallest p-value comes from the 
comparison of joyzepam with the placebo: it is p < 
0.0001 and it is so low that even multiplying it with 
3 results in the same p < 0.0001 after correction. 
The next larger value comes from the comparison 
of anxifree and joyzepam: the original p = 0.0006 is 
multiplied with 2 resulting in p = 0.0011. Finally, the 
p-value from the comparison of anxifree to the 
placebo p = 0.1502 is multiplied by 1 (i.e., not 
corrected) and remains p = 0.1502.



  

 

ANOVA with one factor in jamovi
post-hoc tests:

UNIVERSITY OF BERGEN

SLIDE 39SEBASTIAN.JENTSCHKE@UIB.NOANALYSIS OF VARIANCE

 Compared to Bonferroni, the Holm correction is a 
little harder to calculate (but only a little). In 
exchange, it has a lower Type II error rate. As 
counter-intuitive as it might seem, it has the same 
Type I error rate. As a consequence, there’s no 
reason to use the simpler Bonferroni correction 
since it is always outperformed by the slightly more 
elaborate Holm correction.
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Tukey and Scheffé are a little more complex to 
calculate. As a general rule, Tukey is more 
appropriate for equal groups sizes, Scheffé if group 
sizes are unequal (in our analysis with N = 6 for all 
groups, Tukey would be more appropriate).

When reporting results from a post-hoc-analysis, you 
might write up the results like this: “Post hoc tests 
(using the Holm correction to adjust p) indicated 
that Joyzepam produced a significantly larger mood 
change than both Anxifree (p = 0.001) and the 
placebo (p < 0.001). In contrast, there was no 
evidence that Anxifree performed better than the 
placebo (p = 0.150).”

Don’t be confused, the four decimals in the output are 
rounded to three decimals in the sentence.
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If the assumption of homogeneity of variances were 
violated, it would have been an option to choose 
“ANOVA” from the icon bar and then select “One-
way ANOVA” instead “ANOVA” (which we just used).

The One-way ANOVA implements a procedure to 
handle unequal variances on the different stages of 
a factor by using Welch’s correction. The post-hoc 
tests within jamovi’s One-way ANOVA can also 
handle inhomogeneous variances (Games-Howell) 
as well as homogeneous ones (Tukey).

Those of you who are very attentive and / or know-
ledgeable might remember the name Welch from the 
t-test where the same correction method exists.

The results we obtain er similar / identical to those 
obtained with the “normal” ANOVA. With Welch’s 
correction, the effect of drug is (still) highly signifi-
cant. Post-hoc tests show that Joyzepam leads to 
larger mood changes as both Anxifree and the pla-
cebo while these two don’t differ from one another.
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In either case of violation (normality and homogeneity 
of variances), there is yet another option: Using a 
non-parametric equivalent of the ANOVA with one 
factor, called the Kruskal-Wallis rank sum test.

This analysis can be found under ANOVA → Non-
parametric → One-way ANOVA (Kruskal-Wallis). 
Other than it’s parametric equivalent which is based 
upon variances, the Kruskal-Wallis test sorts the 
values of the dependent variable (mood.gain) and 
assigns ranks to each value. Those ranks are then 
summed up per group and then compared between 
the groups. An detailed description of the 
mathematics behind the test can be found on p. 
349 – 352 of the jamovi-book).
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It reveals results that are quite similar to the 
parametric equivalent: The p-value for the whole 
model is p = 0.0024.

The Kruskal-Wallis test even includes something 
similar to the post-hoc-tests in the ANOVA, called 
“Dwass-Steel-Critchlow-Fligner pairwise 
comparisons” (activated by ticking «DSCF pairwise 
comparisons»). Here we also obtain results that 
largely match those obtained with the first ANOVA: 
Joyzepam significantly differs from both Anxifree 
and the placebo, whereas Anxifree and the placebo 
don’t significantly differ from one another.

Please note that both the One-Way ANOVA with 
Welch’s correction as well as the non-parametric 
Kruskal-Wallis test are only available for designs 
with one factor. You would have to drop further 
factors from your analysis and to concentrate on 
the factor of most interest if you want to use them.



  

 

ANOVA with more 
than one factor
in jamovi

The framework of the ANOVA can be extended to 
encompass multiple predictors. For instance, 
suppose we were interested in using a reading 
comprehension test to measure student 
achievements in three different schools, and we 
suspect that girls and boys are developing at 
different rates.

Each student is classified in two different ways: on 
the basis of their gender and on the basis of their 
school. What we’d like to do is analyse the reading 
comprehension scores in terms of both of these 
grouping variables. Factorial ANOVA is the tool for 
answering such questions. Dependent on the 
number of grouping variables (factors), we could 
also refer to the analysis as a two-way ANOVA.
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For such two-way ANOVA we can continue with the 
clinicaltrial data set that we already used for our 
one-way ANOVA. In addition to looking at the effect 
of different drugs on the mood.gain experienced by 
each person, we could further look whether there 
was an effect of therapy. We used therapy before 
(in order to demonstrate the equivalence of t-test 
and ANOVA) but without significant result (p = 
0.2098).

From the contingency table, we can see that the 
design is completely crossed (i.e., there exist all 
possible combinations of the two factors) and even 
balanced (with an equal number of people in each 
group).
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first pair of hypotheses 
(for the effect of drug)

H
0
: μ1. = μ2. = μ3.

H
1
: μ

1.
 ≠ μ

2.
 OR μ

1.
 ≠ μ

3.

          
OR μ

2.
 ≠ μ

3.

Like the one-way ANOVA, the factorial ANOVA is a 
tool for testing hypotheses about population means.

For the first pair of hypotheses (for the effect of drug), 
the null hypothesis (H

0
) claims that all row means 

are the same: μ1. = μ2. = μ3. Our alternative hypo-
thesis (H

1
) claims that at least one row mean is dif-

ferent, so either is μ.1 ≠ μ.2 OR μ.1 ≠ μ.3 OR μ.2 ≠ μ.3

Note, though, that the indices have changed. Where-
as we denoted them with the kind of drug earlier 
(µp, µa, µj) so are they now changed to denote the 
means of the rows in the table above: µ1., µ2., µ3. 
Please note the tiny dot in the index: for the rows it 
is in the second position (indicating an average 
over columns) and for the columns it is in the first 
position. This is done to increase flexibility as we 
could easily increase the number of factors, e.g., 
µ

1.. 
(even though then we couldn’t summarize them 

so handy in a table any more).
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second pair of hypothe-
ses (for the effect of 
therapy)

H
0
: μ.1 = μ.2

H
1
: μ

.1
 ≠ μ

.2

The second pair of hypotheses (for the effect of 
therapy) is much easier (as it only contains two 
levels. Our null hypothesis (H

0
) assumes that our 

column means are the same: μ.1 = μ.2 Our 
alternative hypothesis (H

1
) claims instead that our  

column means are different: μ.1 ≠ μ.2

For this analysis each person is cross-classified by 
the drug they were given (a factor with 3 levels) and 
what therapy they received (a factor with 2 levels). 
We refer to this as a 3 × 2 factorial design.

Our hypotheses are exactly the same as for earlier 
analyses. Even the sum of squares, degrees of 
freedoms, and mean squares stay the same.

However, it often is better to run a single analysis that 
includes both drug and therapy as predictors. This 
has to do with the residuals and is discussed later.
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Factorial ANOVA in jamovi (Main eff.)

When assembling this analysis, we create a new 
ANOVA with ANOVA → ANOVA, assign mood.gain 
to «Dependent Variable» and drug and therapy to 
fixed factors. In order to keep the model simple, 
and to concentrate on the main effects of drug and 
therapy first, we have to open the drop-down-menu 
“Model” and remove the interaction drug * therapy 
from the variable list “Model Terms” (use the arrow 
to the left for removing it).

The ANOVA table for this more complex factorial 
ANOVA can be read and interpreted as the table for 
the simpler one way ANOVA. The factorial ANOVA 
for our 3 × 2 design found a significant main effect 
of drug: F(2,14) = 26.15, p < 0.001; as well as a 
significant main effect of therapy: F(1,14) = 7.08, p = 
0.019. This shows that the basic logic and structure 
behind factorial ANOVA is the same as that which 
underpins one way ANOVA.
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Factorial ANOVA in jamovi (Main eff.)

From the F-ratio of the first analysis by hand where 
we started with F = MSb / MSw, we replace the MSw 

with MSR since this mean square (MS) is denoted in 
the jamovi-table with Residuals (hence the index R).

We extend or refine the F-ratio for the first factor 
(drug) into FD = MSD / MSR. An equivalent formula 
exists for the second factor (therapy): FT = MST / 
MSR. In comparison to the previous ANOVA (only 
using drug as a independent variable), we can see 
that SSR and MSR went down. This means that 
therapy was suitable to account for variance that 
wasn’t explained by first factor drug, which led to 
the SSR (i.e., the sum of squares of the residuals, 
the variation which couldn’t be explained by the 
model) went down and with it MSR. MSR is used to 
calculate FD and FT. FD is therefore higher than in 
the previous analysis (with one factor) and the p-
value get smaller (even though it is already so 
small that this is not directly visible).
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Factorial ANOVA in jamovi (Main eff.)

Mathematically, SSA and SSB are also calculated by 
quite similar (unfortunately a little more complex) 
formulas as those used in the one way ANOVA:

Please note that to keep the formulas general, SSD is 
SSA here and SST is SSB. This generic form also 
means that the formulas are arranged in rows (for 
factor A) and columns (for factor B), hence the 
indices r or c.

This is also the form used in an external file where I 
describe how these calculations are carried out by 
hand. You find the file “Analysis of Variance - 
Factorial by hand.pdf”. Don’t be afraid to have a 
look, it is easier and less frightening than you may 
believe. The calculations for the main effects are on 
the first pages and that document. 

SS A = (N⋅C )⋅∑
r=1

R

(Ȳ r .−Ȳ ..)
2 SS B = (N⋅R )⋅∑

c=1

C

(Ȳ . c−Ȳ ..)
2
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Factorial ANOVA in jamovi (Main eff.)

When comparing the results from the two individual 
ANOVAs that we did with drug and therapy with the 
current analysis, we can see that the sum of 
squares, degrees of freedom and mean square for 
each factor are identical. The null and alternative 
hypotheses tested by the one-way ANOVAs are 
also identical to the hypotheses tested by the 
factorial ANOVA.

However, the results (F- and p-statistics) are diffe-
rent. This becomes most clearly when considering 
the one-way ANOVA for therapy that we did to 
demonstrate the equivalence of t-test and F-test.

There, we didn’t find a significant effect (the p-value 
was 0.2098), whereas the main effect of therapy 
within the context of the two-way ANOVA is signifi-
cant (p = 0.019). Why do the results from the two 
analyses differ so much?
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Factorial ANOVA in jamovi (Main eff.)

The reason lies in how the residuals are calculated. 
The idea behind an F-test is to compare the varia-
bility that can be attributed to a particular factor with 
the variability that cannot be accounted for by the 
whole model (the residuals). The one-way ANOVA 
for therapy “ignored” the effect of drug, and vice 
versa ignored the one-way ANOVA for drug the 
effect of  therapy.

Variability induced by the “ignored” effects ends up in 
the residuals. As a consequence, the data appear 
to include more “noise” or unexplained variance. If 
we ignore a factor that actually matters (e.g., drug) 
when trying to assess the contribution of something 
else (e.g., therapy), our analysis is distorted.

That is, you should be carefully consider (already 
when designing an experiment) which variables 
might make a difference to explain variation in 
order to prevent that they end up in the residuals.
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Factorial ANOVA in jamovi (Main eff.)

However, this is not an argument to indiscriminately 
add factors to our models. Factors that we include 
have to be genuinely relevant to the phenomenon 
of interest. And strictly speaking, we should only 
include factors that we hypothesized to have an 
influence when designing the experiment, not only 
we thought they might be a nice addition while 
analysing our data.

If an additional factor that we considered turned out 
to be non-significant in a three-way ANOVA, it is 
perfectly fine to disregard it and just report the 
simpler two-way ANOVA. Often doing that makes 
the model easier to understand and to report.
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The ANOVA model that we’ve used so far covers a 
range of different patterns that we might observe in 
our data. These are called main effects and are 
shown in the figure on the left. As a general rule, 
when we deal with a main effect, the lines in the 
plot are parallel.

In a two-way ANOVA design we have four possible 
main effects: neither Factor A nor Factor B matters 
(top-left quadrant), only Factor A matters (top-right 
quadrant), only Factor B matters (bottom-left 
quadrant), and both Factor A and Factor B matter 
(bottom-right quadrant).
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I used a little read dot to make clear where the mean 
of the whole sample would have been. For the 
example top-left all dots representing group means 
(black and white) are on the same level as the red 
dot. For the example top-right the means are lower 
left and higher right. For the example bottom-left 
one line lies above, and one below. The last qua-
drant it is a combination of the two previous ones. 
This is the situation, that we had in the ANOVA for 
the clinicaltrials data set where we found significant 
main effects for both drug and therapy. The plots 
are for demonstrating a simple general case. If we 
wanted to adapt them to our clinicaltrials-ANOVA, 
the x-axis would have to contain a third level (and 
the factors would have to be adapted (Factor A – 
drug, Factor B – therapy).
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In addition to the main effects that we covered so far, 
there is another class of effects called inter-
actions. These are shown in the figure on the 
right-hand side. An interaction between Factor A 
and Factor B occurs whenever the effect of Factor 
A is different, depending on which level of Factor B 
we’re considering.

This is maybe a bit abstract to understand. A con-
crete example for an interaction using our current 
data set is to suppose that the operation of Anxifree 
and Joyzepam is governed by different physiolo-
gical mechanisms. A consequence is that Joyze-
pam has a similar effect on mood regardless of 
whether one is in therapy or not. In contrast is 
Anxifree much more effective when administered in 
conjunction with CBT. That is, the effect of drug is 
different in dependence of which level of therapy 
we are on (this is shown in the quadrant top-left).
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Factorial ANOVA in jamovi (Interact.)

The ANOVA that we used so far doesn’t capture such 
an interaction (actually we removed it to have a 
didactic step-by-step approach).

Therefore we have now to extend our ANOVA again 
to include the interaction. We do this by opening 
the drop-down-box «Model» again, selecting the 
two variables in «Components» and assigning 
them to «Model Terms».

This also extends our main table «ANOVA – 
mood.gain». It allows us to assess for the 
interaction (drug * therapy) whether the effect is 
real, i.e. not just random variation due to chance. 
However, while the two main effects for drug and 
therapy are significant (as we already saw in the 
previous model), the interaction is not significant (p 
= 0.125).
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Factorial ANOVA in jamovi (Interact.)

Often it is easier to assess main effects and 
interactions visually (especially if we have complex 
model with three or more factors and their 
respective interactions). For the visualization, we 
open the drop-down-menu «Estimated Marginal 
Means» and move drug and therapy into the 
variable list «Marginal Means» within ‘Term 1’.

If there were only main effects, the two lines should 
be (more or less) parallel (if you were to remove the 
interaction we just added under «Model» this in fact 
would happen).

Even though the interaction was not statistically 
significant (p = 0.125), the effect of CBT (i.e., the 
distance between the black and the grey line) 
varies: when the drug is Joyzepam (middle) it 
appears to be near zero (the black and grey circle 
are at about the same level), it is a little larger when 
a placebo is used (right), however, when Anxifree is 
administered, the effect of CBT is largest (left).
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Factorial ANOVA in jamovi (Interact.)

We obtained two significant main effects whereas the 
interaction wasn’t significant. The opposite case 
may also happen. Then, we would have obtained a 
significant interaction effect but no corresponding 
main effects.

A prototypical example is the crossover interaction 
shown three slides ago (bottom right corner). This 
is a bit difficult to interpret. When adjusting our 
dataset a bit to be a 2 × 2 design, we could imagine 
comparing the combination of two pharmacological 
interventions (e.g., Anxifree vs Joyzepam) and two 
different treatments for phobias (e.g., systematic 
desensitisation vs flooding). If we found that Anxi-
free had no effect when desensitisation was used, 
and Joyzepam had no effect when flooding was the 
treatment, this would represent a classic crossover 
interaction. We’d find that there is no main effect of 
drug or therapy: they cancel out each other as a 
consequence of the interaction.
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The key assumptions of factorial ANOVA are 
homogeneity of variance, normality of the residuals, 
and independence of the observations. The latter, 
we have to ensure with our choice of research 
design, the first two assumptions can we check.

As in the case of the one-way ANOVA, normality of 
the residuals is checked by using the Shapiro-Wilk 
test and the Q-Q-plot of the residuals, the homo-
geneity of variances with Levene’s test (just tick 
“Normality test” for Shapiro-Wilk, “Q-Q-plot”, and 
“Homogeneity test” for Levene’s).

Both the Shapiro-Wilk and Levene’s test are not sig-
nificant (i.e., our assumptions are not violated) and 
the residuals in the Q-Q-plot (right) don’t deviate 
much from the main diagonal.

For the homogeneity of variances, there is also a 
visual way of assessing the assumption. In the 
Estimated marginal means plot (bottom-left), all 
error bars should have about the same length.
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We had a brief introduction into effect sizes earlier. 
Within the ANOVA, we can ask for three effect 
sizes: η² (eta squared),  ηp² (partial eta squared) 
and ω² (omega squared). Partial eta squared is not 
recommended. Why is explained on the next slide.

η² is possibly the most intuitive one, given that it can 
be interpreted in much the same way as R² in 
regression. It denotes the proportion of variance, 
the factor accounts for in relation to the total 
variance (or sum of squares which is variance 
multiplied by the number of participants): η²drug = 
SSdrug / SStotal. It ranges from 0 (no effect at all) to 1 
(accounts for all of the variability in the outcome).

For the current analysis, we said earlier that η²drug = 
0.713 is fairly substantial and practically relevant, 
η²therapy = 0.096 is a medium sized effect (r = 0.3 → 
r² = 0.09 ~ η²therapy = 0.096).
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A main idea with partial η² (or ηp²) is that, when 
measuring the effect size for a particular factor, to 
deliberately ignore the other effects in the model.

ηp² «pretends» that the effect of all these other contri-
butions is zero, and then calculates what the η² 
value would have been:  ηp² = SSdrug / (SSdrug + 
SSR). The absolute value of ηp² always will give a 
larger number than η² since SSdrug + SSR will always 
be smaller than SStot. Like η², partial η² varies 
between 0 and 1. It is fairly popular, likely due to 
the easy interpretation, the larger absolute value 
compared to η², and the fact that SPSS provides it 
as (the only) effect size output.

A clear disadvantage is that partial η² “scales” with 
how many factors we include in our model (and 
hence, how much variance is left for the residuals). 
Thus, you might end up reporting an outdated value 
after a change to the model.
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The total variance used for η², in contrast, is a 
property of the data collected and remains 
unchanged (regardless of whether the model is 
changed). Finally, in the output, η² for all effects is 
0.713 + 0.096 + 0.056 = 0.865, whereas ηp² is 
0.841 + 0.417 + 0.293 = 1.551.

This has two undesirable consequences: (1) When 
using ηp² the different contributions (main effects 
and interactions) can add up to more than 1 which 
is rather counter-intuitive; it is definitely easier to 
imagine which proportion of variance is explained 
by a value that adds up to maximally 1 (= 100%).

(2) ηp² also “blows up” small effects (from looking at 
ηp² for therapy, the value is rather misleading – 
0.417 – appears as about half the size of ηp² for 
drug – 0.841 – which doesn’t reflect the 
contributions in terms of sum of squares: 0.467 vs. 
3.453).

Taken together, the advice is to rather not use ηp².
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η² also has a drawback because it is affected by the 
sample size and even though it is accurate for the 
sample variance, it overestimates the proportion of 
population variance explained.

For small samples, it is therefore better to choose an 
unbiased effect size measure such as ω² (omega 
squared). ω² has the same basic interpretation 
(proportion of the variance explained). It is an 
unbiased estimate of the population variance (and, 
given the corrections, always smaller than η²).

This becomes especially obvious the combination of 
both a small sample size and a small effect size 
(where we are particularly likely to make an error in 
the estimation): Compared to η² for drug * therapy 
(0.056), ω² is about half-size (0.033). Please note 
that this argument was only for illustration given 
that we shouldn’t assess the effect size when the 
drug * therapy interaction isn’t significant.



  

 

Analysis of 
covariance 
(ANCOVA)
in jamovi

Another “flavour” of ANOVA is used when you have a 
continuous variable that you believe might be 
related to the dependent variable (and that you 
wish to control for). This additional variable can be 
added to the analysis as a covariate, in the aptly 
named analysis of covariance (ANCOVA).

In an ANCOVA, the values of the dependent variable 
are “adjusted” for the influence of the covariate, and 
then the “adjusted” score means are tested 
between groups in the usual way. This technique 
can increase the precision of a model, and provide 
a more “powerful” test of the equality of group 
means in the dependent variable.

It is, however, required that the covariate is not con-
founded with any of our categorical variables (fac-
tors). If it were, we would diminish or cancel out 
effects in those categorical variables. An example 
is if we used age as covariate when the experimen-
tal groups differ in mean age.
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To conduct an ANCOVA in jamovi, we open the data 
set ancova.omv which contains four variables: 
happiness, our dependent variable, as well as two 
categorical (stress – low vs. high, commute – 
cycling vs. not cycling) and one continuous (age) 
independent variables.

We start the analysis with clicking on «ANOVA» in 
the icon bar and then choosing «ANCOVA». In the 
input window, we assign happiness to «Dependent 
variable», stress and commute to «Fixed factors» 
and age to «Covariates». We then open the drop-
down-menu “Assumption checks” and check all 
three options.

They reveal that neither Homogeneity of Variances 
(Levene’s test) nor the Shapiro-Wilk test of 
Normality became significant, so we must not be 
concerned that our assumptions might be violated. 
The Q-Q-plot also gives no reason for concern.
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Finally, there is an additional assumption when we 
would like to include a covariate: the relationship 
between the covariate and the dependent variable 
should be similar for all levels of the independent 
variables / fixed factors.

This can be checked by opening the drop-down-
menu “Model” selecting all variables in 
“Components” simultaneously and assigning them 
to “Model Terms” (using the upper arrow).

This makes our “ANCOVA – happiness” table twice 
as long as before. We go through the table and 
assess all interactions involving age. It reveals that 
neither interaction is significant: stress * age (p = 
0.292), commute * age (p = 0.438), stress * 
commute * age (p = 0.366).

We can therefore remove these interactions from the 
model terms (but leave the main effect of age 
included).
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After we checked all these assumptions, we can turn 
to the table “ANCOVA – happiness” and assess the 
results. It appears as if the covariate age makes an 
contribution to predicting the dependent variable 
happiness (F(1, 15) = 6.39; p = 0.023). The other main 
effects and their interaction are significant as well: 
stress (F(1, 15) = 52.61; p < 0.001), commute (F(1, 15) = 
42.33; p < 0.001), stress × commute (F(1, 15) = 14.15; 
p = 0.002).
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We can use “Estimated Marginal Means” and tick 
both “Marginal means plots” and “Marginal means 
tables”. This allows us two things: First, we can 
visually assess the main effects and interactions of 
stress and commute. 

The significant interaction effect we obtained is 
reflected in almost no difference in happiness 
regardless of whether they are driving or cycling for 
people experiencing high levels of stress, whereas 
the difference (i.e., the advantage of cycling over 
driving) is large for people experiencing low stress 
levels.

In addition, there are main effects for both stress – 
people with low stress are, on average, happier 
than those with high stress – and for commuting 
behaviour – people who cycle are happier than 
those who drive to work.
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with age without age

We can use the estimated marginal means also for 
assessing consequences of including the covariate 
in our ANOVA: The easiest way of adding or 
removing it is by opening the drop-down-menu 
“Model”, and moving age forth and back between 
“Model Terms” and “Components”.

When can then look at how the estimated marginal 
mean scores in the table “Estimated Marginal 
Means - commute * stress” are adjusted depending 
on whether the covariate age is included in or 
removed from “Model Terms”.

Alternatively, we could use the estimated marginal 
means plot. We need a bit of a keen eye to see that 
the happiness values for high stress differ less 
between cycling or not cycling when age is 
included while the gap widens if not.
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We can also see this in the table with the main 
results “ANCOVA – happiness” where the 
interaction effect (stress × commute) gets stronger 
if age is included as covariate (age included: F(1, 15) 
= 14.15; p = 0.002; age not included: F(1, 16) = 6.45; 
p = 0.022).

There is another aspect to argue for including the 
covariate age: If it is not included, the Shapiro-Wilk 
test becomes significant, that is we have to 
conclude that our assumption of normality would be 
violated if we don’t include age in our model.



  

 

Analysis of variance for 
repeated measurements 
(rmANOVA) in jamovi

Let’s turn to our final bit. Quite often, we acquire mul-
tiple measurements from within one person. Two 
typical cases are: (1) that different experimental 
conditions are used within the same participant 
(usually as trials belonging to different conditions 
and presented in random order) or (2) that we have 
a pre-measurement followed by some treatment or 
intervention, a post-measurement and another 
measurement after some time to assess the stabi-
lity of the intervention.

The repeated-measures ANOVA test is a statistical 
method of testing for significant differences 
between three or more levels of a factor applied to 
the same participant (or a participant that is closely 
matched with participants on another level of the 
experimental conditions). As a consequence, there 
should always be an equal number of measure-
ments (data points) on each level.
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This type of design and analysis can also be called a 
«within-subjects» design. Generally, the logic 
behind a repeated measures ANOVA is very similar 
to that of an independent ANOVA (sometimes 
called an independent ANOVA or «between-
subjects» design).

Like in the standard or independent ANOVA, the total 
variability is still partitioned into between-groups 
variability (SSb) and within-groups variability (SSw), 
and after each is divided by the respective degrees 
of freedom to give MSb and MSw from which the F-
ratio is calculated: F = MSb / MSw.
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In a repeated measures ANOVA, the SSw is divided 
into two parts: One part, the variability due to the 
individual differences between subjects (referred to 
as SSsubjects) is controlled for because we are using 
the same or a matched subject for each level of our 
independent variable / factor. 

Only the other part of SSw which is due to random 
variation, measurement errors, etc. remains. Using 
each participant as its own control and thereby 
removing or controlling for one source of variation 
in SSw typically leads to the repeated-measurement 
ANOVA being more powerful. However, this does 
depend on whether the reduction in SSw compen-
sates for the reduction in degrees of freedom for 
the error term as they go from (n – k) to 
(n – 1) · (k – 1).
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We use a dataset from a sample of patients with 
Broca’s aphasia. For each patient, communication 
difficulties within three domains were assessed: 
«Speech» required patients to repeat single words 
read out aloud by the researcher. «Conceptual» 
required matching a series of pictures with their 
correct name. «Syntax» required bringing words 
within sentences into a syntactically correct order.

To conduct the analysis, we open ANOVA → 
Repeated Measures ANOVA. Then, we assign a 
name to the factor denoted as RM Factor 1, e.g., 
“Language skills”. Afterwards, we assign names to 
the different levels – it can be the same as our 
variable names («Speech», «Conceptual», 
«Syntax»). Finally, we assign our variables to the 
variable list called “Repeated Measurement Cells”. 
Ensure that the variables are in the right place!
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GG ε > 0.75?signif.?

In addition, we open the dropdown-menu 
«Assumption checks» and tick «Sphericity tests».

In the output, we first assess Mauchly’s Test of 
Sphericity. Conceptually, it is equivalent to the 
homogeneity of variances in the “classical” ANOVA 
(i.e., the one without repeated measurements).

It tests the hypothesis that the variances on the 
different factor levels (i.e., «Speech», 
«Conceptual», and «Syntax») are equal. In our 
analysis, Mauchly’s test is not significant (p = 
0.720), and we can conclude that the variances are 
not significantly different.

If they were, i.e., if Mauchly’s test had been signifi-
cant (p < 0.05 ) and there were differences in the 
variances at the different levels, we should apply a 
correction to the F-value.
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GG ε > 0.75?signif.?

We could do this by ticking either «Greenhouse-
Geisser» or «Huynh-Feldt» under «Sphericity 
correction» in «Assumption checks».

«Huynh-Feldt» is chosen if the Greenhouse-Geisser 
value in the table «Tests of Sphericity» is larger 
than 0.75, otherwise «Greenhouse-Geisser» has to 
be used.

If we were to apply a correction for our dataset, we 
would have to tick «Huynh-Feldt» since the 
«Greenhouse-Geisser» value in the table «Tests of 
Sphericity» is 0.868 (which is larger than 0.75).

Since the p-value for Mauchly’s test was relatively 
high (i.e., far from significance), we can see that the 
applied corrections would have been so minor that 
they are hardly detectable.

However, this was just for demonstration: The 
Mauchly’s Test of Sphericity was not significant (p = 
0.720): No correction is required and we can leave 
the tick at «Sphericity corrections» → «None».



  

 

rmANOVA in jamovi

UNIVERSITY OF BERGEN

SLIDE 78SEBASTIAN.JENTSCHKE@UIB.NOANALYSIS OF VARIANCE

Finally, we can assess our results. We obtain a F(2,10) 
= 6.93 and an p = 0.013 for the repeated measure 
«Language skills» and can conclude that the 
performance in each language task did vary 
significantly.
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For the repeated measurement ANOVA, we have the 
choice of three effect sizes. I had to use a different 
data set on the right hand side because for the 
case of only one repeated-measurements factor 
(language skills in our current data set) all three 
reveal identical results.

The three effect sizes differ though in how they are 
calculated, more specifically by which value the 
square sum of our effect of interest is divided. I will 
go through each of them and briefly explain their 
calculation. As I argued more comprehensively on 
an earlier slide, η² is the most solid among the 
choices.

η², at the same time, is also the one that is lowest. In 
exchange, it is the one to be understood most easi-
ly and the least flawed one. It is calculated by divi-
ding the sum of squares for the effect by the total 
sum of squares.
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The generalized η² (n
g
²) divides the sum of squares 

for the effect by the sums of squares for this effect 
plus all residuals. As a consequence, the individual 
effect sizes can add up to a value larger than one, 
so it is not very intuitive.
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Partial η² is actually the worst among the three as it 
only considers the residuals for the effect itself. It is 
calculated by dividing the square sum of the effect 
by the square sums of the effect plus the residuals 
of the effect. Among the three effect size measures, 
it is the largest (hence it’s popularity). Like the 
generalized η², it can add up to values larger than 
one which is difficult to interpret.

All three effect sizes are the same with regards to the 
numerator (i.e., the part above the fraction bar): 
This is always the sum of squares for the effect.

They differ, though, with respect to the denominator 
(the part below the fraction bar): For η² it is the total 
variance (i.e., the total amount of variation; there-
fore, the added effect sizes can be maximally 1). 
Generalized η² takes into consideration the sum of 
squares of the effect plus all variation that we can’t 
explain with our model. Partial η² only considers the 
sum of squares plus the residuals of that effect.
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Using the drop-down-menu «Estimated Marginal 
Means», we can ask for either descriptive statistics 
(in tables) or a plot showing the performance in the 
different tasks.

The plot demonstrates that the performance is 
highest for repeating the word, lower for matching 
the names of the words to the pictures and lowest 
for arranging words in accordance with their 
syntactically correct order in a sentence.
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Post Hoc Comparisons - Language skills

Comparison

Language skills   Language skills Mean Difference SE df t p ptukey pholm

Speech - Conceptual 1.0000 0.6831 5.0000 1.4639 0.2031 0.3813 0.2031
  - Syntax 2.8333 0.9098 5.0000 3.1142 0.0264 0.0581 0.0793
Conceptual - Syntax 1.8333 0.7032 5.0000 2.6073 0.0478 0.1024 0.0957

 

Like for the independent ANOVA, we can use post-
hoc tests to assess the differences between the 
different levels. We open the drop-down-menu 
«Post-hoc tests», assign «Language skills» to the 
variable box and tick «Holm» as correction for 
multiple comparisons («Tukey» is already ticked as 
default).

We obtain no significant differences. This indicates 
that whereas the pooled variance over all three 
stages of our factor is significant, the one-by-one 
differences between those stages are not. As we 
saw on the previous slide, there is a linear trend 
with a falling performance from the first (speech) to 
the last stage (syntax) of our factor, that drives the 
significance for the whole factor whereas the error 
bars on those stages are still overlapping.
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In case one or more of our assumptions are not met, 
there is a non-parametric equivalent to the 
repeated-measures ANOVA (with one factor), called 
Friedman test.

It reveals the same results as its parametric 
counterpart: The whole model (χ² = 6.64; df = 2; p = 
0.036) being significant, mainly driven by the 
difference in performance between «Speech» and 
«Syntax» (Durbin-Conover value =  3.499, p = 
0.006) with the two other comparisons not being 
significant. This is a difference to the parametric 
ANOVA before where this difference was close to 
but did not reach significance.

It can, however, not be used with more complex 
designs (i.e., two or more factors). In case, the 
factors have to be broken down and be tested 
individually.
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literature

You (almost) made it through the lecture!
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• introduction
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• ANOVA with more than one factor in jamovi
• ANCOVA in jamovi
• ANOVA for repeated-measurements in jamovi
• for all: assumption checks (normality and variance 

homogeneity), effect sizes, and post-hoc tests
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Let’s briefly summarize it. We started with embedding 
the ANOVA within the context of other methods 
(using categorical vs. continuous variables, relation 
vs. difference hypotheses, and within-subject vs. 
between-subjects type of variables and which type 
of ANOVA to use for each).

That was followed by a bit of history and a by-hand 
calculation of an ANOVA with one factor.

Afterwards we turned to ANOVAs with one or several 
factors, the ANCOVA and the ANOVA for repeated 
measurements. If there were non-paramentric 
alternatives (as for the independent ANOVA and the 
repeated measures ANOVA with one factor), we 
also introduced those. Each of the four parts also 
contained a discussion of assumption checks, 
effect sizes and post-hoc tests.
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The literature that was covered in the lecture was 
chapter 13 and 14 from the jamovi-book (Navarro & 
Foxcroft, 2022).

I you wish an alternative account or would like a 
stronger focus on SPSS, you can have a look at the 
chapters 9, 10, 16 and 17 in Aron, Aron & Coups 
(2013).

Finally, there are books that really take you to the 
depth of what can be explored using ANOVAs and 
the mathematical background. One recommen-
dation, available on Oria, is:

Kirk, R. E. (2013). Experimental design: Procedures 
for the behavioral sciences (4th ed). Sage 
Publications.



  

 

Thanks for bearing 
with me...
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