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Welcome to a combined lecture with PC exercise on 
factor analysis.



  

 

Agenda
• some theoretical background
• Exploratory Factor analysis (EFA)
• Principal Component Analysis (PCA)
• Confirmatory Factor Analysis (CFA)
• Reliability Analysis
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In this lecture, I will introduce several concepts that 
stand back factor analysis. First, this is the 
distinction between latent variables (representing 
theoretical concepts, also called psychological 
constructs) and manifest variables that we 
measure.

After that, the different steps within a factor analysis 
will be introduced: factor extraction, factor 
selection, factor rotation and factor interpretation. 
Factor analysis is organized as a kind of a ping-
pong: The software extracts the factors, you select 
them; the software rotates the factors to make 
interpretation easier for you. The latter, interpreting 
what the factors mean represents your major 
contribution to a factor analysis.



  

 

Agenda
• some theoretical background
• Exploratory Factor analysis (EFA)
• Principal Component Analysis (PCA)
• Confirmatory Factor Analysis (CFA)
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Afterwards we will turn towards how four different 
factor-analytical approaches are calculated. The 
main focus will be on exploratory factor analysis. 
Principal component analysis is mathematically 
similar but conceptually different from EFA and is 
covered very brief. Confirmatory Factor Analysis is 
only for those who already know that they might 
use it (e.g., in their M.Sc. thesis to validate a 
questionnaire). The others may skip that part. 
Finally, Reliability analysis deals with one important 
aspect of reliability: internal consistency. It 
measures to what degree the items in a 
questionnaire or a scale within a questionnaire are 
assessing a common underlying concept.



  

 

Some theoretical background
● Factor analysis is a statistical method used to 

describe common variability among observed, 
correlated variables in terms of a potentially lower 
number of unobserved variables called factors.

● Factors are latent variables that are not observed 
but inferred (through a mathematical model).
Factors are derived from manifest variables that 
are observed (directly measured).
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Factor analysis is a statistical method used to 
describe common variability between correlated 
variables that we measured in terms of a potentially 
lower number of unobserved variables called 
factors.

With those characteristics, it serves two purposes: (1) 
It aims to account for different aspects of behaviour 
by hypothesizing that they are brought about by an 
underlying psychological construct (or theory). (2) It 
also serves as a data reduction technique by 
describing a larger number of observed variables 
by a smaller number of underlying factors.

Central for these two purposes is the concept of 
latent variables. Those latent variables (or factors) 
are initially hidden and then inferred through a 
statistical analysis based upon the correlation of 
the observed variables (which are directly 
measured).
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● Factor analysis is a statistical method used to 
describe common variability among observed, 
correlated variables in terms of a potentially lower 
number of unobserved variables called factors.

● Factors are latent variables that are not observed 
but inferred (through a mathematical model).
Factors are derived from manifest variables that 
are observed (directly measured).

Latent variables represent psychological phenomena 
or constructs that are difficult to directly observe or 
measure. Examples for latent variables are 
personality dimensions, intelligence or certain 
attitudes or opinions.

An easy way to imagine a latent variable is that is a 
hidden characteristic of a person that we can’t 
directly see, e.g., job satisfaction. We can, 
however, describe that characteristic by combining 
different aspect of the behaviour of that person. A 
person satisfied with their job could be expected to 
answer certain questions in a (relatively) 
predictable manner or show certain behaviour (e.g., 
work a lot, be dedicated to their employer).



  

 

Some theoretical background
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Another classical example for latent variables (the 
circles in the figure) is intelligence. Psychological 
constructs of intelligence differ considerably with 
regard to into how many subdimensions intelligen-
ce is split. The figure represents the assumption is 
that one general intelligence factor is split into two 
large subdimensions for verbal and performance.

We assume the position of a person on the latent 
variable «intelligence» and its subdimensions by 
measuring their behaviour (i.e., their performance) 
in certain tasks assumed to contribute to these 
subdimensions of intelligence. Somebody who is 
intelligent should, e.g., possess a large vocabu-
lary, have good working memory (digit span), etc.

Test results from the individual tasks are then “con-
verted” into a score on the latent variable on the 
subdimensions and further on to general intelli-
gence (expressed as IQ) by using a mathematical 
combination for (weighing) of these results.
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● Factor analysis is a statistical method used to 
describe common variability among observed, 
correlated variables in terms of a potentially lower 
number of unobserved variables called factors.

● Factors are latent variables that are not observed 
but inferred (through a mathematical model).
Factors are derived from manifest variables that 
are observed (directly measured).

It is also assumed that certain behaviour – from 
performance in specific tasks to how somebody 
replies to questions in a questionnaire – can be 
assessed with manifest variables. These manifest 
variables, strictly speaking a combination of them, 
are “caused” by an individual's position on one or 
more underlying latent variable(s).

Once the position on the latent variables is 
determined (and controlled for), it is assumed that 
the manifest variables won’t correlate any more 
and have nothing in common beyond these 
influences resulting from the latent variables.



  

 

A practical example
Participants responded to the following six state-
ments with 1 = totally disagree to 5 = totally agree
1) My friends think I should use eco-friendly products.
2) My neighbors think I should use eco-friendly products
3) My colleagues think that I should use eco-friendly products.
4) I feel a moral obligation to buy eco-friendly product.
5) I feel a moral obligation to recycle household waste.
6) I feel a moral obligation to buy products that contain 

recycled ingredients.
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Let’s try this with an example: A group of participants 
was asked 6 questions that assessed their attitudes 
towards ecology. Already from the way the 
questions are formulated, you will see that the first 
three questions rather reflect expectations from 
other people towards the person answering the 
questionnaire, whereas the latter three questions 
rather assess what a person feels as a duty or an 
obligation.



  

 

A practical example
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6

Var 1 –
Var 2 0.82 –
Var 3 0.74 0.86 –
Var 4 -0.11 0.14 0.08 –
Var 5 0.02 -0.12 -0.07 0.67 –
Var 6 0.06 0.08 0.13 0.55 0.73 –
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As a consequence of this pattern in the questions 
(i.e., that the questions fall in two “categories” or 
have two topics), the variables are correlated with 
each other in a predictable fashion. Those 
questions substantially correlated with each other 
fall into a common category. There must be 
something underlying, which “causes” this pattern 
of correlations. The underlying cause are our latent 
variables, and we aim to extract them based upon 
the pattern of correlations that we observed.

There is another thing to note. Outside the to groups 
of variables that correlate substantially due to a 
underlying latent variable (or factor), the remaining 
correlations are rather low.



  

 

A practical example
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Var 1

Var 2

Var 3

Var 5

Var 4

Var 6

social norms

personal norms

underlying latent 
phenoma (not obs.)

factor loadings 
β

ε1

ε4

ε5

ε6

ε3

ε2

When visualizing the two presumed underlying latent 
variables and their consequences, we see that the 
first factor “social norms” has a relatively strong 
impact on variable 1 to 3, whereas the second 
factor “personal norms” has a relatively strong 
impact on variable 4 to 6. Apart from that the 
influence is rather minor. That is visualized by the 
grey arrows: The first factor has rather a negligible 
influence on variable 4 to 6 and vice versa has the 
second factor little influence on variable 1 to 3.

This is exactly the pattern that we saw in the 
correlation matrix on the previous slide.

Our aim is now to determine factor loadings or 
weights. Those loadings are “extracted” from the 
correlation matrix.



  

 

A practical example
similarity with a regression model:
Yi = β1X1i + β2X2i + εi

for example:
Var1i = β1 · social normsi + β2 · personal normsi + εi

Var2i = β1 · social normsi + β2 · personal normsi + εi

... and so on for Var3 to Var6
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These loadings can be described as similar to the β-
weights in a regression model (one can use the 
General Linear Model for nearly everything...).

If we would calculate the value of person i on variable 
Var 1, we do this by multiplying the first (relatively 
large) weight β1 with the position of person i on the 
(hidden) latent variable “social norms” and adding 
this up with the result of multiplying the (relatively 
small) weight β2 with the position of that person i on 
the other (hidden) latent variable “personal norms”.

For variable 1 to 3 the first weight β1 is relative large 
(think of the black arrow on the previous slide) for 
variable 4 to 6 the second weight β2.

For a person relatively high on “social norms” and low 
on “personal norms” we can expect high values / 
scores for variable 1 to 3 and rather low values / 
scores for variable 4 to 6. If a person where high on 
both social and personal norms, the values for all 
variables would be high.
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There is a last point in the regression equation, that I 
would like to mention, the error term εi. This is the 
part of the variance in the variable that we can not 
account for by our knowledge of a person’s position 
on the two latent variables “social norms” and 
“personal norm” (in combination with the weights 
for those variables).

The error term is also important for a central 
distinction between two central factor-analytical 
methods: exploratory factor analysis (EFA) and 
principal component analysis (PCA). Quite some 
statistics programs (including SPSS) treat the PCA 
as a method within EFA. From a mathematical 
standpoint, the way the are calculated is (more or 
less) identical, however, the two methods have 
different underlying assumptions and serve 
different purposes.



  

 

EFA vs. PCA
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PCA EFA

The fundamental difference between the two 
methods is that the PCA (left) assumes or aims to 
assign all available variance to underlying 
components. The main function of the PCA is there-
fore not to test any theoretical assumptions about 
some underlying latent variables but to reduce the 
data (strictly speaking, to try to describe the 
originally k dimensions – one per variable – with a 
lower number of dimensions). The aim is to 
describe as much as possible of the available 
information with as less as possible dimensions.

The PCA further assumes that all variation in the 
variables can be accounted for by the extracted 
components.



  

 

EFA vs. PCA
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PCA EFA

The EFA assumes instead that only a certain propor-
tion of the variation in the variable can be 
accounted for by the proposed underlying latent 
variable(s). Given this assumption, the total 
variance is split in two components. The common 
variance, and the unique variance. The common 
variance is how much of the variation in one 
variable can be accounted for by the remaining 
variables. In principle is the common variance in 
the EFA what results from a linear regression where 
one variable is the dependent and the remaining 
variables are the independent ones, which are 
used to predict the dependent variable.

The unique variance (i.e., the part which can’t be 
predicted by the other variables) is again split in a 
part that is specific to a particular item or variable 
and another part which is error variance (e.g., 
caused by measurement errors).



  

 

Steps of a factor analysis
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Factor
extraction

Factor
selection

Factor
rotation

Factor
interpretat.

When conducting a factor analysis, we have four 
steps. As I said, it works a little like ping-pong. In a 
first step, the software extracts factors. In the 
second step, You carry out a selection how many of 
these extracted factors are to be considered (taken 
further) and how many are deselected.

Afterwards follows the factor rotation. The aim is here 
to make the extracted factors you selected easier 
interpretable. This is done by shifting or rotating the 
factor loadings (β) with the aim that each variable 
loads as highly as possible on one factor and as 
lowly as possible on other factors.

The interpretation is primarily based upon these high 
loadings. Variables that load high on one factor are 
important to the factor. What the factor may repre-
sent can be inferred from what the variable means. 
This may sound a bit cryptic. I hope it gets a bit 
clearer once we have a look at each of these steps 
one after another.



  

 

Factor extraction
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6

Var 1 0.70
Var 2 0.82 0.79
Var 3 0.74 0.86 0.71
Var 4 -0.11 0.14 0.08 0.61
Var 5 0.02 -0.12 -0.07 0.67 0.79
Var 6 0.06 0.08 0.13 0.55 0.73 0.75
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The first part, the factor extraction, is starting with the 
correlation matrix (such as the one we saw some 
slides ago for the items where attitudes to the 
environment where assessed).

The basic idea is to “shift” the dimensions in the data 
(6 in this case, one for each variable) in a way such 
that one factor “takes care” of the correlations 
between variable 1 to 3, another factor of the 
correlations between variable 4 to 6 whereas the 
remaining factors “take care” of what variation is left 
over. Those interested in a more “mathematical” 
account, please ask in the discussion.

Here is also the place where the difference between 
EFA and PCA is decisive for what happens in the 
calculation. The values that can be found in the 
main diagonal are either the results of the 
prediction of one variables by all others (for the 
EFA) or 1 (for the PCA). That is, the example you 
see in the table represents an EFA. 
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Remember the slide with the regression equation. 
What basically happens during what I described as 
“shifting” on the previous slide is that the β-weights 
are iteratively (step-by-step) adjusted in a way that 
β1 best “represents” the first latent variable and β2 
the second latent variable. Of course, there are 
also β3 to β6 but these are during the process 
adjusted to rather low loadings as the represent the 
remaining small correlations that we also find in the 
matrix / table on the slide.

There is one last concept I need to introduce: 
Eigenvalues. Let’s assume that the variation in 
each variable gets assigned the value 1 (mathe-
matically, this is simply a z-transformation). For our 
6 variables, we have a total eigenvalue of 6 to 
distribute. β1 and β2 having relative large influence 
will get assigned relatively large eigenvalues, the 
remaining β3 to β6 rather small ones.



  

 

Steps of a factor analysis
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Factor
extraction

Factor
selection

Factor
rotation

Factor
interpretat.

The eigenvalues are central for how many of the 
extracted factors we are going to select.



  

 

Factor selection
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four possible methods:
• parallel analysis
• eigenvalue
• scree plot
• theoretical assumptions

We have four possible choices how to make the 
selection, two mathematical ones (where we just 
choose the method and max. set one parameter 
and the rest is done automatically) and two that 
require our interaction. Let’s begin with the latter.



  

 

Factor selection
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four possible methods:
• parallel analysis
• eigenvalue
• scree plot
• theoretical assumptions

Here we define how many factors we want to select 
by entering that into our statistics software.

The decision can either be based upon theoretical 
assumptions (i.e., that we claimed, out construct 
contains of a certain number of factors; the Big Five 
personality model proposes 5 factors or dimensions 
with a certain “meaning”, e.g., Neuroticism).

The second opportunity would be based upon the 
scree plot (shown in the figure on the right). The 
eigenvalue of each factor is visualized in 
descending order (the line with the blue dots). At 
one point of that line, the descent goes from steep 
to flat (like an elbow). Everything left from that (i.e., 
the first factor for that screeplot) is considered 
meaningful.



  

 

Factor selection
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four possible methods:
• parallel analysis
• eigenvalue
• scree plot
• theoretical assumptions

The other two criteria a based on thresholds (and 
don’t need our interaction after choosing that 
method). The first of those is parallel analysis. 
Here, the eigenvalues for a random matrix (with the 
same number of variables and participants as in 
our data matrix) are determined (by running a 
parallel factor extraction on these random data). 
The results are shown as line with yellow dots. 
Whenever the eigenvalue of the real data exceeds 
that of the random data (i.e., if the blue dot is above 
the yellow dot) the factor is selected. In the figure, 
factor 1 and 2 would be selected.

Finally, we have to so called Kaiser-criterium, an 
eigenvalue of 1 as threshold (represented by the 
dotted line). Using that criterium, factor 1 would be 
selected. Initially, each variable has an eigenvalue 
of 1. Factors that are selected would therefore 
explain a higher amount of variance than any of the 
original variables.



  

 

Factor selection
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four possible methods:
• parallel analysis
• eigenvalue
• scree plot
• theoretical assumptions

It is possible and common to consider these criteria 
in combination. For example would both the scree-
plot and the eigenvalue-criterium have suggested 
to keep one factor whereas the parallel analysis 
would have suggested two.

In any case, if we have any theoretical assumption 
regarding how many factors we expect, this should 
take precedence. Otherwise, for the current case, I 
would recommend to only consider one factor. Both 
scree plot and eigenvalue-criterium suggest that. In 
the end, it is always our responsibility to decide 
what we deem best, and to properly describe and 
justify this decision.
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Factor
extraction

Factor
selection

Factor
rotation

Factor
interpretat.

After we decided about how many factors we want to 
included the procedure continues with rotating the 
selected factors.



  

 

• aim: simplify the solution, 
help interpretability

• orthogonal:
Varimax, Quartimax

• oblique
Oblimin, Promax,
Simplimax

Factor rotation
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unrotated Oblimin

A situation that is quite typical after factor extraction 
and selection is that variables have several rather 
small loadings on many or all extracted factors. In 
the example in the left table, the majority of  
variables has loadings on the first factor whereas 
other factors receive few loadings.

This has to do with the way factors are extracted. The 
first factor has the largest amount of explained 
variance, the other factors less (according to their 
order). This can also be seen at the scree plot. If 
you try to conceptualize this in terms of our 
example so are both social and personal norms 
related to environmental-responsible behaviour (the 
first factor).



  

 

• aim: simplify the solution, 
help interpretability

• orthogonal:
Varimax, Quartimax

• oblique
Oblimin, Promax,
Simplimax

Factor rotation
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unrotated Oblimin

What we would like to achieve is that one class of 
variables has rather high loadings on one factor 
and rather low loadings on others like in the 
example in the right table. Or in terms of our 
example: We would like that instead of the 
variables loading very strongly on one factor 
(environmental-responsible behaviour) the loadings 
are «redistributed» so that some of the original 
variables have high loadings on social norms and 
low loadings on personal norms and that others 
variables show the opposite pattern, i.e. low 
loadings on social norms and high loadings on 
personal norms.

I mentioned before that determining which variables 
have high loadings on the factor (i.e., are especially 
representative for it) is essential for our interpre-
tation what a factor means.



  

 

Factor rotation
• aim: simplify the solution, 

help interpretability
• orthogonal (top):

Varimax, Quartimax
• oblique (bottom)

Oblimin, Promax, Simplimax
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In order to achieve that, we rotate the factors. The 
dots in the original (unrotated) situation – that is 
relative to the coordinate system and the axis with 
solid lines – have relatively considerable distances 
from both axes / factors.

Through the rotation, we achieve something similar to 
fitting a regression line: The distance to one factor 
is minimized and to the other factor maximized.

In the top example, the whole coordinate system is 
rotated by a certain angle, from the original position 
where the lines are solid and arranged like a 
normal coordinate system, to the position of the 
dotted lines. The 90°-relationship of the two axes to 
each other is kept. Therefore, this is called an 
orthogonal rotation. It means means that the two 
factors are independent of each other and not 
correlated.
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help interpretability
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The bottom example is called oblique rotation: Each 
axis is rotated separately, not the coordinate 
system as a whole. They are therefore not ortho-
gonal any longer. This has the advantage that they 
can be fitted more easily right through the clouds of 
dots. But not being orthogonal also means that the 
two factors are not independent of each other any 
more. Once they are correlated, changing the 
position on one factor also means that the position 
on other factors is changed as well (though to a 
lesser degree).

That psychological constructs such as personality 
dimensions or different aspects of intelligence are 
correlated is the typical case. Therefore, an oblique 
rotation also often bears more ecological validity 
than a orthogonal rotation.
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Factor
extraction

Factor
selection

Factor
rotation

Factor
interpretat.

The rotation has the aim of making interpreting the 
factors easier. The interpretation is the last step 
and also the steps that needs our contribution 
most. The reason that an arrow is shown from 
factor interpretation to a new round of factor 
extraction indicates that we might decide to adjust 
certain decisions we made in the first round in order 
to refine or improve our model.



  

 

Factor interpretation
• assess the factor loading
• start with variables with high 

loadings and assess their 
meaning (e.g., variable label, 
questionnaire item)

• should be in accordance with 
you theoretical construct
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Factor interpretation means to assign meaning to the 
results we obtained. The main part of our results 
are the so called factor loadings, i.e., information 
about how much a certain variable contributes to a 
factor.

Typically, we would – within each factor – look for 
variables that have especially high loadings and 
are therefore especially representative for the 
factor. A sensible approach would be to assess the 
two, three variables with the highest loadings and 
trying to figure out what they have in common. This 
reasoning is typically based upon what the variable 
was supposed to measure.

In addition, we should base our reasoning on our 
theoretical construct. What we decide regarding the 
meaning of a factor has to fall within the limits of 
our construct.



  

 

Assumption checks
before starting a factor analysis:

● N: at least 300 respondents (Tabachnick & Fidell, 
2007); may be smaller (N ~ 150) with high factor 
loadings (above .80)

● correlations per variable: at least some 
above .30 and none with .90 or higher
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For being on the safe side when conducting a factor 
analysis, one should have a dataset consisting of at 
least 300 respondents (Tabachnick & Fidell, 2007). 
The number of participants can be lower and a 
smaller dataset (of approximately 150 respondents) 
may also be suitable when factor loadings are high 
(above .80).

Regarding the strength of the correlations between 
the variables: Each variable should be correlated 
with a couple of other variables with above .30. 
Variables that don’t show any correlations of that 
magnitude should possibly be excluded as they 
contribute little to the understanding of the structure 
of the data.

We also have to check for the other extreme: 
Variables that have a correlation of .90 or higher, 
cause multicollinearity, and one of the two variables 
in such a pair of highly correlating variables should 
be removed.



  

 

Assumption checks
within the factor analysis:

● Bartlett's test of sphericity: deviation from an 
identity matrix → variables are correlated with 
one another → can be “summarized” into a factor

● Kaiser-Meyer-Olkin (KMO): < 0.6 not suitable; 
0.6 – 0.7 mediocre; 0.7 – 0.9 good; > 0.9 
excellent
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Within the factor analysis procedure, we can request 
two further statistical measures:

Bartlett's test of sphericity assesses to what degree 
our correlation matrix deviates from an identity 
matrix. In an identity matrix (ones in the main 
diagonal, zeros outside the main diagonal), 
variables are only correlated with themselves and 
not with other variables. The more our variable 
structure deviates from an identity matrix, i.e., the 
more variables in your dataset are correlated with 
each other, the better these variables can 
potentially be summarised with a smaller set of 
factors. Bartlett’s test must be significant (p <.05).
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The Kaiser-Meyer-Olkin (KMO) criterion of sampling 
adequacy is conducted for each possible pair of 
variables and then averaged. It is tested whether 
only that pair of variables is correlated (without any 
further correlation with other variables). The 
correlation for each variable pair is set into relation 
to the partial correlation for that variable pair (while 
the influence of all other variables is controlled for). 
If the correlation is equally large as the partial 
correlation, the two variables don’t further correlate 
with other variables. This means, a factor involving 
this variable pair would likely be just based on 
these two variables. Typically, we aim for to extract 
factors based on several variables.

KMO assesses this danger: KMO values smaller than 
0.6 indicates that EFA is not suitable. Values 
between 0.6 and 0.7 are considered mediocre, 
values between 0.7 and 0.9 are good and values 
between 0.9 and 1.0 are excellent.



  

 

Exploratory factor 
analysis in jamovi

Now shall we take our theoretical reasoning into 
praxis by conducting an exploratory factor analysis 
in jamovi.

All analyses in jamovi are using a data set called 
bfi_sample.omv (which is available on MittUiB).
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I indicated before, that before we start with a factor 
analysis, we should assess the correlation matrix 
with all variables we would like to include in the 
factor analysis.

This can be done in a tedious or an easy way (even 
though the easy way – using R syntax – might not 
look that attractive at first).

What you have to do if you check visually is to first 
untick «Report significance». This removes the p-
values and makes checking the correlations a little 
easier. For each variable, you now check the 
correlations within the line until you reach the main 
diagonal. From there you continue down. There 
should be a couple of variable pairs showing 
correlations of above 0.30 for that variable. If not it 
is likely wiser to exclude that variable.

There also shouldn’t be variable pairs that correlate 
with more than 0.9. If so, one variable from that pair 
should be removed.
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The easy way involves opening the Rj editor and 
copying the syntax I made available on MittUiB 
(Syntax_CheckCorrelations.R).

It will output four lines, the first two lines telling you 
how many correlations of above 0.30 each variable 
has. As a rule of thumb 10% (i.e., 2 to 3 for 25 
variables) should be the bottom limit, and you 
should consider removing that variable, if that 
minimum isn’t reached. In our example, «O4» is 
such an variable with 0 correlations above 0.3.

The second part (line three and four of the output) 
checks for correlations of above 0.90 which would 
cause multicollinearity. If you find a correlation of 
that size, you should remove one of the variables 
(remember that correlations are between pairs of 
variables, there is only need to remove one).
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variable box
• choose extraction method:
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works well
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Then you start the factor analysis by choosing 
«Factor» from the icon bar and then selecting 
«Exploratory Factor Analysis». In the window that 
opens, you assign the variables you want to include 
to the variable box.

Afterwards, you decide about the extraction method 
you want to choose.

“Minimum residuals” is the most stable option and 
therefore the default. It works like a linear 
regression where you with an Ordinary Least 
Squares try to find the solution where the sum of 
the squared residuals is minimal (i.e., ε from some 
slides ago is minimized).
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“Maximum likelihood” is probably the choice with the 
potential to lead to the best extraction (i.e., the 
clearest factor structure). It would therefore be 
preferable However, it also bears a risk to be 
unstable for data sets that are not “well behaved”, 
i.e. deviating from assumptions such as minimum 
(0.3) and maximum correlations (0.9) between 
variables.

The method aims to obtain “optimal” estimates of 
factor loadings and unique variances as to 
maximize the multivariate normal likelihood function 
summarizing the similarity between observed 
covariances and the covariances accounted for by 
our factor structure.
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“Principal axis” is the most conventional technique. It 
is based upon eigenvalue decomposition of a 
correlation matrix. This was shown in the example 
in the theoretical part (slide 16/17).

The communalities represent the proportion of the 
variation of one variable that can be accounted for 
by the remaining variables. These communalities 
are entered into the main diagonal.

What the eigenvalue decomposition does is to 
“describe” the communality (in the main diagonal) 
by the correlations (outside the main diagonal). It is 
an so-called iteration, and the procedure is 
repeated until the weights in the diagonal converge 
and do not vary any more.
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eigenvalue > x
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When determining the number of factors to be 
selected within our analysis, we can distinguish 
methods based upon their “automaticity” vs. the 
degree to which they require user interaction.

Parallel analysis is a fully automatic method to 
determine the number of parameters. It determines 
eigenvalues to be compared with those in our 
observed date by using a random matrix of the 
same size (i.e., same number of participants and 
variables). If the eigenvalue obtained by the real 
data (blue dots) lies above the eigenvalue in the 
random data (yellow dots), the factor is included.
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A semi-automatic method is to set a threshold to a 
certain eigenvalue. If the eigenvalue of a factor 
obtained from the data exceeds this threshold, the 
factor is included. A very common threshold is the 
so-called Kaiser-criterium where the threshold is 
set to 1. With this threshold, a factor explains at 
least as much variance as it contributed to the 
original data.
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At the manual option, the number of factors is set by 
the user. The user may be guided by two sources 
of information when making that decision: (1) 
Theoretical assumptions – e.g., for the Big Five 
personality model, it is logical to assume that 5 
factors should be extracted. (2) Based upon the 
scree plot. In the scree plot shown, there is a 
relative steep decline between first and second 
factor. Afterwards, the remaining factors have 
relatively low eigenvalues. There is a characteristic 
change in the plot that looks like an elbow. The 
factors before the elbow turns direction («1» in the 
example on the figure) are manually chosen.

Typically, our decision regarding the number of 
factors is made up by weighing or combining the 
different metrics. If, e.g., scree plot and eigenvalue 
= 1-criterium suggest one factor and parallel 
analysis two, one may chose one.
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gonal) or «Oblimin» (oblique)
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Rotations are performed iteratively. Iteratively means 
that the angles for rotation are step-wise increased 
or decreased to reach an optimal stage. The 
optimization either maximizes (Varimax) or 
minimizes (Oblimin) an objective criterion 
simultaneously for all the factors.

The most common classes of rotations are either 
orthogonal and oblique. For an orthogonal rotation, 
the coordinate system in which all measurements 
and the factors lie remains unchanged. For an 
oblique rotation, the axes of the factors don’t have 
to be orthogonal and the factors can be correlated.

Varimax is an orthogonal rotation tries to maximize 
the sum of the squared loadings in each factor.

Quartimax is also an orthogonal rotation that seeks to 
maximize the sum of all loadings raised to power 4 
(i.e. squared and squared again).
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Promax is the oblique equivalent of Varimax: It keeps 
trying to maximize the variance of the squared 
loadings in each factor while permitting that the 
factors become correlated.

Oblimin is an oblique rotation which aims to minimize 
the “obliqueness”, i.e., the amount with which 
factors are correlated, while also maximizing the 
variance.

Simplimax is an oblique rotation which minimizes the 
small loadings in order to make the factor structure 
as simple as possible.
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Unrotated Varimax Oblimin

Typically, oblique rotations result in a factor structure 
that is easier to interpret: Factor loadings are a little 
larger while small, spurious loadings rather have 
disappeared: In the table, the factor related to 
extraversion (2 for Varimax, 3 for Oblimin) has 
more small loadings in Varimax (A5, O3) whereas 
the loading for N4 appears in either rotation 
method.

Please not that the remaining loadings are not 0 or 
non-existent, but rather not shown because of the 
threshold we set under «Hide loadings below».
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• Assumption Checks:

both options should
be ticked and evaluated

• Factor Loadings:
leave the defaults (0.3)

• Additional Output:
tick all options except
«Initial eigenvalues»
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Finally, there are three categories of input:
1)   Both assumption checks should be ticked and 

evaluated.
2)   Setting the threshold from which factor loadings 

are shown in the table makes it easier to hold the 
overview when assessing the factor loadings.

3)   From the «Additional Output» all options except 
«Initial eigenvalues» should be ticked.
«Factor summary» gives an overview of what 
proportion of variance each factor explains and 
for much variance all factors up to that factor 
account for in total.
«Factor correlations» is relevant if we choose an 
oblique rotation because the table reports how 
much the factors are correlated.
«Model Fit measures» allows us to assess the 
quality of our factor analysis.
«Scree plot» should always be chosen to help 
assess how many factors should be extracted.
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In the results, the first thing to look at should be the 
scree plot (at the end). Given that the automatic 
option – parallel analysis – is the default, you 
should check whether you would like to accept the 
number of extracted factors proposed by the paral-
lel analysis. In our case, the parallel analysis pro-
poses five factors. This is in accordance with our 
theoretical assumptions that personality can be 
described by five dimensions. It is also in accor-
dance with that in the scree plot, the «elbow» is 
lying left from the 6th factor: After that criterium we 
also would extract 5 factors.

For the eigenvalues (please note that the grey line in 
the figure is added manually): This criterium above 
«1» would extract four factors. Whether the fourth 
is inside or not can be found out in two ways. Either 
just switch to the eigenvalue-criterium within 
«Number of extracted factors» or tick «Initial 
eigenvalues» to get them in a table.
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When being required to decide, how you should 
weigh the information? Clearly, the theoretical 
assumptions you had before or a theoretical model 
that your test is based upon always should take 
precedence. For how the weigh the remaining infor-
mation it comes down to preference.

I would weigh the scree plot next: It gives you a 
(relatively clear) picture of the structure of the data. 
In the scree plot above you see a decrease from 
factor 1 to 5, then a little of a drop and before the 
rest is rather flat and low (asymptotic). Especially 
such a drop as the one we have between factor 5 
and 6 is rare to see. More often, we will have a less 
clear picture. In such cases, the scree plot might be 
not as informative as we have here. My preference 
for the scree plot primarily rests on the information 
we can extract from it. If there is little information in 
it (e.g., if it is unclear where the «elbow» are), other 
measures should be weighed higher.
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Next, we turn to checking the assumptions. The 
Bartlett’s Test of Sphericity should be significant. 
This indicates that the correlation matrix we used 
for determining our factors significantly deviate from 
an identity matrix. Which again means that the 
variables in our dataset were correlated with each 
other, and could be summarised with a smaller set 
of factors.
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The KMO-measure for the whole test is a little over 
0.8 which counts as “good”. It might be worthwhile 
to check the KMO-values for the individual 
variables in order to see whether it should be 
considered not to include individual variables. 
These values are generally in the same range as 
the KMO-value for “Overall”. “A1” is a bit of an 
exception with 0.594. Unfortunately, there are no 
firm recommendations, regarding when to exclude 
a variable. I would start considering that if the value 
were under 0.5 and if the “Overall”-value is much 
higher (difference over 0.3).
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The final bit of checking is evaluating the model fit. 
Typically, to use model fit criteria isn’t too common 
in the context of an EFA. These criteria are much 
more needed and appropriate when conducting an 
confirmatory factor analysis (CFA). Whereas we 
have a hypothetical model in the CFA, in the EFA 
we are (kind of) comparing our factor structure to a 
“model” without (i.e., 0) factors.

The measure which should be checked is the root 
mean square error of approximation (RMSEA). This 
fit index is an estimate of the discrepancy between 
the model and the data. Values less that .05 
constitute good fit, values between 0.05 and 0.08 
constitute acceptable fit, a values between 0.08 
and 0.10 constitute marginal fit and values greater 
than 0.10 indicate poor fit. Our model lies therefore 
within the margin of an acceptable fit, just above 
the border to “good”.
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Factor Statistics

Summary
Factor SS Loadings % of Variance Cumulative %

1 2.613 10.452 10.452
2 2.379 9.516 19.968
3 2.407 9.628 29.597
4 2.207 8.826 38.423
5 1.836 7.343 45.766

 

Inter-Factor Correlations
  1 2 3 4 5

1 — -0.158 -0.162 0.023 -0.104
2   — 0.315 0.133 0.187
3     — 0.229 0.223
4       — 0.203
5         —

 

Once we decided about how many of the extracted 
factors we would like to include and after checking 
assumptions and model fit, we can turn to the main 
results.

The factor loadings give you an impression about 
which items (or more generally variables) 
contribute to a certain factor (which again also 
indicates what the factor might mean). Please note 
that the parts which are blank typically still contain 
factor loadings, but small ones that are not shown 
based upon the setting not to show loadings below 
0.3 (set this to 0 to see the table with all loadings).

The loadings reveal a relatively clear factor structure 
with factor 1 mainly receiving contributions (i.e., the 
highest loadings) from N-items, factor 2 from C-
items, factor 3 mainly from E-items (with an addi-
tional contribution from N4), factor 4 from A-items 
and factor 5 from O-items (with O4 having an odd 
loading pattern within factor 4 instead of 5).
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Factor Statistics

Summary
Factor SS Loadings % of Variance Cumulative %

1 2.613 10.452 10.452
2 2.379 9.516 19.968
3 2.407 9.628 29.597
4 2.207 8.826 38.423
5 1.836 7.343 45.766

 

Inter-Factor Correlations
  1 2 3 4 5

1 — -0.158 -0.162 0.023 -0.104
2   — 0.315 0.133 0.187
3     — 0.229 0.223
4       — 0.203
5         —

 

Regardless of that “outlier” the factor structure (i.e., 
how the factor loadings are distributed between 
factors) is still quite clear and we can turn to the 
next part of the results, the factor summary and 
their correlations.

In the factor summary, the most important information 
is how much of the variation in the original data is 
explained by our factors. After the rotation, the 
proportion to which each factor explains variance is 
quite equally distributed, all explain around 10%. 
This together accounts for about 46% of the original 
variation. Ideally, this could be a little higher (80% 
would be excellent).
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Factor Statistics

Summary
Factor SS Loadings % of Variance Cumulative %

1 2.613 10.452 10.452
2 2.379 9.516 19.968
3 2.407 9.628 29.597
4 2.207 8.826 38.423
5 1.836 7.343 45.766

 

Inter-Factor Correlations
  1 2 3 4 5

1 — -0.158 -0.162 0.023 -0.104
2   — 0.315 0.133 0.187
3     — 0.229 0.223
4       — 0.203
5         —

 

Correlations between factors are typically in the 
range of 0.0 to 0.4 – which would be regarded 
marginal to small in terms of Cohen’s effect sizes.

This is desirable because the higher the correlations 
are, the more difficult it gets to explain what the 
factor means. If we consider, e.g., factor 1 we 
would like it to be as clearly as possible 
“connected” to one underlying cause (in this case 
neuroticism) without having too much influence or 
contributions from the other factor.
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Factor Statistics

Summary
Factor SS Loadings % of Variance Cumulative %

1 2.613 10.452 10.452
2 2.379 9.516 19.968
3 2.407 9.628 29.597
4 2.207 8.826 38.423
5 1.836 7.343 45.766

 

Inter-Factor Correlations
  1 2 3 4 5

1 — -0.158 -0.162 0.023 -0.104
2   — 0.315 0.133 0.187
3     — 0.229 0.223
4       — 0.203
5         —

 

The most important task when calculating a factor 
analysis is the interpretation of what the factors 
mean.

The quite clear factor structure makes it relatively 
easy for the current data set. A description what the 
variables mean can be found here: 
https://personality-project.org/r/html/bfi.html

We can mostly rely on which items load on which 
factor and how high. For factor 1 all items loading 
on the factor are those designed to assess 
behaviour which is regarded neurotic (e.g., is the 
item N1 with the highest loading “Get angry 
easily.”).

For factors where the loadings are a little more 
spread (such as factor 4) we have to integrate the 
meaning from the items assessing agreeableness 
with other ones such as O4 (“Spend time reflecting 
on things.”) where “things” possibly includes the 
own behaviour towards others.
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Finally, we have to describe what we did in our factor 
analysis in order to report it in a manuscript. 
Unfortunately, there is not a formal standard way to 
write up an EFA, and different disciplines and 
researchers seem vary considerably. However, 
some fairly standard pieces of information should 
be included in your report:

1)   What are the theoretical underpinnings for the 
area you are studying, and specifically for the 
constructs that you are interested in uncovering 
through EFA.

2)   A description of the sample (e.g., demographic 
information, sample size, sampling method).

3)   Describe of the type of data used (e.g., nominal, 
continuous) and provide descriptive statistics.

4)   Describe the testing of assumptions for the EFA. 
Details regarding sphericity checks and 
measures of sampling adequacy should be 
reported.
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5)   Explain what FA extraction method (e.g., 
«minimum residuals») was used.

6)   Explain the criteria and process used for deciding 
how many factors were extracted in the final 
solution. Clearly explain the rationale for key 
decisions.

7)   Explain what rotation methods were attempted, 
the reasons why (at least for orthogonal vs. 
oblique), and the results.

8)   Final factor loadings should be reported in the 
results, in a table. This table should also report 
the uniqueness (or communality) for each 
variable (in the final column). Factor loadings 
should be reported with descriptive labels in 
addition to item numbers. Correlations between 
the factors should also be included, either at the 
bottom of this table, in a separate table.
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9)   Meaningful names for the extracted factors 
should be provided. You may like to use 
previously selected factor names (e.g., from a 
theoretical model you study was based upon, if 
such exist). It also might be, that on examining 
the actual items and factors you may think a 
different name is more appropriate. Generally, 
this process should be guided by the variables 
showing the highest loadings on the factor as 
those are most indicative.
Remember that making sense of the factors is 
your main contribution. It is worth spending time 
on finding the most appropriate description for 
these factors, and how you arrived at that 
description.



  

 

Principal component 
analysis in jamovi

The introduction to the principal component analysis 
will be rather brief. As I said in the introduction: 
While being mathematically similar in the way the 
calculations are carried out for “Principal compo-
nents” in the PCA and “Principal axis” in the EFA; 
the conceptual difference is considerable.

Whereas the EFA aims to describe the variation in 
our measured variables by an underlying factor 
(latent variable), the main aim of the PCA is data 
reduction (i.e., the components that are extracted 
don’t necessarily have to have a connection to a 
theoretical concept as long as they do a reasonable 
job in compressing the original amount of data).
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When looking at the input window for Principal 
Components Analysis and Exploratory Factor 
Analysis, they look more or less identical. 

There are small differences such as that there is no 
choice of methods for extraction (there is only one 
in PCA) and that model fit measures are missing. 
Model fit measures are not commonly used in EFA 
and for the PCA they conceptually don’t make 
much sense: Why would I check a fit with an 
underlying concept or model if there isn’t one, just 
the aim to reduce the data. Finally, there is a slight 
differences in wording with “component” being 
replaced by “factor” in Factor summary etc.
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Given that the underlying mathematical calculations 
are very similar, it doesn’t come too much as a 
surprise that the pattern of loadings for these 
components vs. factors looks very much alike. That 
factor 2 and 3 are swapped and that the values for 
uniqueness for the components in the PCA are 
generally lower comes from the different 
assumptions and what goes into the calculations.

Whereas for the PCA all variance in the variables is 
considered, the EFA only considers the variance 
that is common with (one could also say: explained 
by) other variables.



  

 

Confirmatory factor 
analysis in jamovi

The next part of the lecture you may skip. Please 
read the possible use cases on the next two slides 
and decide whether it might be relevant for you. 

Otherwise, continue at “Reliability analysis”.
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Often, we have the case that the presumed 
relationship between observed and latent variables 
is known. This knowledge can be based upon 
theory (e.g., that we claim a relationship – factor 
structure – with certain properties), empirical (we 
developed a questionnaire in an earlier study, did a 
factor analysis and know this factor structure), or 
both.

One purpose of such confirmatory factor analysis 
might be that we want to confirm what is called the 
“measurement model”: the relationship between the 
observed and their proposed or known underlying 
factors. One reason to be interested in this question 
might be if you used an existing questionnaire in 
your study, developed through an earlier study and 
possibly in a different lab. You would like to ensure 
that the theoretical assumptions, the questionnaire 
was based upon, still hold for the sample from 
which you acquired your data.



  

 

Introduction
• tests the presumed relationship between 

observed and latent variables
• several purposes:

– confirm the “measurement model”
– test a theoretically developed model of a 

psychological construct
– get estimate of the measurement errors in our 

sample

UNIVERSITY OF BERGEN

SLIDE 63SEBASTIAN.JENTSCHKE@UIB.NOFACTOR ANALYSIS

 The other common use case is that you theoretically 
developed a model where you proposed a 
psychological construct and described which 
aspects (i.e., factors) contribute in what way to that 
construct. Based upon that construct, you develop 
a questionnaire and collect data with that 
questionnaire. For the data collected, you would 
like to know, to what degree these data are in 
accordance with the psychological construct you 
proposed.

Finally, one further purpose is – also by comparing 
the proposed or known factor structure with our 
empirical data – to get an estimate of the 
measurement errors in our sample.



  

 

Getting started...
• choose «Factor» → «Con-

firmatory Factor Analysis»
• edit «Factor 1» in your

variable box into a recog-
nizable name
assign variables belonging
to that factor

• add as many further factors
as needed and assign vars.
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We start a confirmatory factor analysis (CFA) before 
we open out statistics software by specifying our 
hypothetical model: That is, we describe which 
variables belong to which factor and decide 
whether these factors are supposed to be 
independent of each other (orthogonal) or 
correlated (oblique).

One word before we start: I prefer a different order of 
factors than the one in the jamovi-book: Neuroti-
cism, Extraversion, Openness to Experience, 
Agreeableness, and Conscientiousness. Don’t be 
confused.
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To conduct a CFA in jamove, we choose «Factor» 
from the icon bar and choose «Confirmatory 
Factor Analysis». Then we assemble the 
factors as they are laid out in our hypothetical 
model. The default name «Factor 1» should be 
edited into  a recognizable name in  
accordance with your model. For our dataset, 
we choose Neuroticism. We then assign the 
variables belonging to that factor (N1 to N5 in 
our example).

Afterwards add as many further factors as 
needed and assign the respective variables. 
For our example that are: Extraversion (E1 to 
E5), Openness to experience (O1 to O5), 
Agreeableness (A1 to A5), Conscientiousness 
(C1 to C5). The order in which the factors are 
added doesn’t make a difference.



  

 

Assessing the output
• model fit:
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In order to quantify, how well our hypothetical model 
fits our empirical data, we can use several model fit 
criteria, including the χ² test for exact fit, the Com-
parative Fit Index (CFI), the Tucker Lewis Index 
(TLI), the Root mean square error of approximation 
(RMSEA) as well as the (Standardized) Root Mean 
Square Residual (SRMR) and Akaike's and Bayes’s 
information criteria (AIC, BIC).

A general remark regarding the χ² test first: It is most 
appropriate for models with about 75 to 200 cases. 
If the sample size exceeds 400, it has a tendency 
to always get significant. Useful rules of thumb for 
interpreting these measures are that a satisfactory 
fit is indicated by CFI > 0.9, TLI > 0.9, and RMSEA 
of about 0.05 to 0.08. A good fit is CFI > 0.95, TLI > 
0.95, and RMSEA with an upper CI < 0.05.



  

 

Assessing the output
• model fit:
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When looking at the output, we can see that the χ² 
value is large and highly significant. Given that our 
sample size is not too large (N = 250), this 
indicates a poor fit. The other indices point in the 
same direction: A CFI of 0.762, a TLI of 0.731, and 
an RMSEA of 0.085 with a 90% confidence interval 
from 0.077 to 0.092 all indicate a poor fit between 
the model and the data.

A possible explanation for those results is that we 
had only about half of the variance in the data 
accounted for by the five factor model in our earlier 
EFA.



  

 

Assessing the output
• factor loadings and

covariances:
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Within the factor loadings, the standardized estimates 
for each of the parameters as well as their z-
statistic and p-value indicate that each variable 
makes a reasonable contribution to the model. 
There doesn’t appear to be any reason to remove 
any of the specified variable-factor paths.

The factor covariance estimates further indicate that 
our assumption the factors in the model might be 
correlated is supported by the data. The factor-
factor correlations from the model as well as their 
respective z-statistic and p-value are also all 
significant.



  

 

Assessing the output
• modification indices:
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To improve the model, there are two choices: One 
option is to go back and think again about the items 
/ measures we are using and how they might be 
improved or changed. Another option is to make 
some post hoc tweaks to the model to improve the 
fit. One way of doing this is to select (tick) 
“Modification indices”, specified in the drop-down 
menu “Additional output”.



  

 

Assessing the output
• modification indices:
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When checking the items / variables with the highest 
modification index value (MI), we could decide 
whether it would make sense to add additional 
terms to the model. Variable N4 (“Often feel blue”) 
with an MI of 28.786 does not only load on the 
factor “Neuroticism” it was assigned to but also on 
factor “Extraversion”. If we add this path into the 
model (i.e., adding N4 as a variable inside 
“Extraversion”) then the χ² value will reduce by 
around the amount of the MI.

However, given the underlying theoretical construct 
(where the variable is part of the factor “Neuroti-
cism”) this path arguably doesn’t really make any 
theoretical or methodological sense, so it’s not a 
good idea (unless you can come up with a 
persuasive argument.



  

 

Reporting a CFA
describe the:
1) theoretical and empirical justification for the hypothesized model
2) model specification (detailed: each latent factor with it’s indicator variables)
3) sample (e.g., demographics, sample size, etc.)
4) type of data (e.g., nominal, continuous) and descriptive statistics
5) estimation method used (and, possibly, assumption checks)
6) (possibly) missing data and how they were handled
7) software and version used to fit the model
8) criteria used, to assess the model fit
9) alterations made to the original model
10) parameter estimates (i.e., loadings, error variances, latent (co)variances) 

and their standard errors
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When reporting a CFA it is recommended to included 
the following information in your report:

1)   A theoretical and empirical justification for the 
hypothesized model.

2)   A complete description of how the model was 
specified (e.g., each latent factor with its indicator 
variables, possible covariances between latent 
variables, and any correlations between error 
terms). Possibly, a path diagram would be good 
to summarize that.

3)   A description of the sample (e.g., demographic 
information, sample size, sampling method).

4)   A description of the type of data used (e.g., 
nominal, continuous) and descriptive statistics.

5)   The estimation method used (and, possibly, 
assumption checks you conducted).
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6)   A description of whether there were missing data 
and how the missing data were handled.

7)   The software and version used to fit the model.
8)   Measures, and the criteria used, to judge model 

fit (χ², CFI, TLI, RMSEA, etc.).
9)   Any alterations made to the original model based 

on model fit or modification indices.
10) All parameter estimates (i.e., loadings, error 

variances, latent (co)variances) and their 
standard errors, probably in a table.



  

 

Reliability
analysis

Finally, questionnaires (also called scales) are often 
developed using EFA. The Big Five in personality 
research constitute a known example for that. It 
started with submitting responses to short 
statements describing personality characteristics 
and mental states to an EFA. Afterwards, the 
derived factor structure – Neuroticism, Extraver-
sion, Openness to experience, Agreeableness and 
Conscientiousness was further assessed using 
confirmatory factor analyses. This served to assess 
whether the proposed structure was in accordance 
with a theoretically proposed, hypothetical model 
with different samples.



  

 

Introduction
• how well measures a scale that combines the 

observed variables the proposed factors?
• reliability → internal consistency → Cronbach’s α
• α = 1 – error variance
• not a measure of unidimensionality
• α > 0.70 – acceptable; α > 0.80 – good; α > 0.95 – 

to high
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There is another aspect of interest: How well are the 
proposed factors measured using a scale that 
combines the observed variables? In psycho-
metrics we use reliability analysis to provide 
information about how consistently a scale 
measures a psychological construct. Internal 
consistency is one aspect of reliability: It refers to 
the consistency across the individual items that 
make up a measurement scale. So, if we have V1, 
V2, V3, V4 and V5 as observed item variables, we 
can calculate a statistic that tells us how internally 
consistent these items are in measuring the 
underlying construct.
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observed variables the proposed factors?
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to high
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Often Cronbach’s α is used to assess the internal 
consistency of a scale (Cronbach, 1951). It is a 
measure of equivalence (whether different sets of 
scale items would give the same measurement 
outcomes). Equivalence is tested by dividing the 
scale items into two groups (a “split-half”) and 
seeing whether the analysis of the two parts gives 
comparable results. Cronbach’s α is a function of 
all the split-half coefficients for a scale. If a set of 
items that measures a construct (e.g., an 
Extraversion scale) has an alpha of 0.80, then the 
proportion of error variance in the scale is 0.20.
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However, Cronbach’s α is not a measure of 
unidimensionality (i.e. an indicator whether a scale 
is measuring a single factor or construct rather than 
multiple related constructs). An α of 0.80 does not 
mean that 80% of a single underlying construct is 
accounted for. It could be that the 80% comes from 
more than one underlying construct. That’s why it is 
useful to do an EFA and a CFA first.

Furthermore, α tends to be sample specific: it is not 
alone a characteristic of the scale, but also reflects 
the sample in which the scale has been used. A 
biased, unrepresentative, or small sample could 
produce a very different α than a large, 
representative sample.
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Nevertheless, despite these limitations, Cronbach’s α 
has been popular for estimating reliability using 
internal consistency (it’s pretty easy to calculate, 
understand and interpret, and therefore an useful 
initial check on scale performance, e.g., when you 
administer a scale with a different sample, from a 
different setting or population).

An alternative is McDonald’s ω. Whereas alpha 
makes the assumptions: (a) no residual 
correlations, (b) items have identical loadings (i.e., 
the variables are summed up / averaged), and (c) 
the scale is unidimensional, ω does not and is 
therefore a more robust reliability statistic. If the 
assumptions are not violated then α and ω will be 
similar, otherwise ω is to be preferred.
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Typically, an α of 0.70 represents “acceptable” 
whereas 0.80 represents “good” reliability. 
Thresholds like this should, however, be used 
cautiously, as they also depend on what exactly the 
scale is supposed to be measuring.

An α of above 0.95 indicates high inter-correlations 
between the items. This indicates too much overlap 
in what the items assess and poses a risk that the 
construct being measured is perhaps overly narrow 
and redundant.



  

 

Getting started...
● «Factor» → «Reliability analysis»
● assign variables to «Items»
● check «Scale Reliability

Statistics» for warnings
regd. inverted items

● revert those items
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To conduct a Reliability Analysis in jamovi, click on 
“Factor” in the icon bar and select “Reliability 
analysis”. In the window that opens, assign the 
variables for which you want to assess the 
reliability to the variable box (i.e., the variables 
measuring / contributing to one factor).

Check the table “Scale Reliability” in the output first. It 
will tell you whether an item correlates negatively 
and has to be inverted. Inverted items are 
supposed to counter response tendencies (e.g., 
participants always saying “strongly agree” or 
“strongly disagree”).

In the case of the Agreeableness-scale, the inverted 
item is A1 (“Am indifferent to the feelings of others” 
– indicating an attitude or an behaviour which is 
opposite of agreeable).



  

 

Getting started...
• tick «Cronbach’s α» and

«McDonald’s ω» for both
Item and Scale Statistics

• tick «Mean» and «Stand.
Deviation» for Scale
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After we did that, we should tick other output options 
we would like to use. I chose all options within 
“Scale Statistics” (i.e., Cronbach’s α, McDonald’s 
ω, Mean and Standard deviation) and  within “Item 
Statistics”, Cronbach’s α and McDonald’s ω.
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Item and Scale Statistics

• tick «Mean» and «Stand.
Deviation» for Scale
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Once we are done with the assembling the first scale 
(Agreeableness), we will set up the analyses for the 
other scales. A time-saving way of doing that is to 
duplicate the first analysis four times (so that we 
have five analyses altogether). This is done by 
right-clicking within the output of our Reliability 
Analysis, and to choose “Analysis” → “Duplicate” in 
the menu that opens.

Afterwards, we go from analysis to analysis and 
change the variables from A1 to A5 to C1 to C5 for 
the second analysis, E1 to E5 for the third, N1 to 
N5 for the fourth, and O1 to O5 for the fifth. Repeat 
assigning the items to “Reversed Scale Items” 
where you got a warning that they should be 
reversed within each of these analyses.



  

 

Assessing the output
• first assess Cronbach’s α and

McDonald’s ω
• check scale mean and std.

deviation, think in terms of a
normal distribution

• any item that would raise α or
ω considerable (> 0.1)
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Then we can assess the analyses. All reveal 
generally acceptable to good α’s, (0.722, 0.759, 
0.780, 0.811) except for openness (0.630). The 
latter might in part be due to our observation that 
the O4-item had that little strange pattern of 
correlations when we did the assumption check at 
the very beginning: It was the only item that 
correlated with any of the remaining variables with 
less than 0.3.

The mean and the standard deviation of a scale can 
be used to check whether the scale might be 
subject to floor or ceiling effects. In the example, the 
mean is 4.612. If we use a 6-point-scale, this mean 
is already relatively high. Given that the standard 
deviation is 0.939, that leaves about 1.5 standard 
deviations at top. Therefore, about 6.7% of 
participants have to choose the highest available 
rating category even though they might have 
chosen an even more extreme answer.
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The last thing to check is the item statistics: If there 
were any item where dropping the item would lead 
to a considerable raise in α or ω (i.e., a difference of 
more than 0.1).

In our example this threshold would be α > 0.822 or ω 
> 0.841. There is no item where this would be the 
case.



  

 

Summary and
literature



  

 

Summary
• some theoretical background
• Exploratory Factor analysis (EFA)
• Principal Component Analysis (PCA)
• Confirmatory Factor Analysis (CFA)
• Reliability Analysis
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Let’s summarize today’s lecture: We started with 
some background for the factor analysis such as 
latent variables, and how these latent variables 
influence the correlation patterns among manifest 
variables. Afterwards, we introduced the steps of a 
factor analysis: Factor extraction, factor selection, 
factor rotation and factor interpretation.

We continued with introducing how to conduct an 
exploratory factor analysis (EFA) in jamovi, incl. 
how to read the output.

Then there was a short demonstration about the 
principal component analysis being mathematically 
similar to the EFA while being conceptually 
different.

The part on confirmatory factor analysis was likely 
skipped by the majority of you.

Reliability analysis explained one aspect of reliabilty 
– internal consistency – and how it can be checked 
within jamovi.



  

 

Literature
• Navarro, D. J., & Foxcroft, D. R. (2022). Learning 

statistics with jamovi. 
https://doi.org/10.24384/hgc3-7p15 (Ch. 15.1 – 
15.2, [15.3], 15.5; p. 419 – 439, [439 – 450], 458 – 
464)
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Most of what was covered in today’s lecture can be 
found in chapter 15 of the jamovi-book (even a bit 
more… ;-). Relevant are the sub-chapters 15.1 
(EFA), 15.2 (PCA) and 15.5 (Reliability analysis). 
For those who would like to use a CFA, this is 
covered in sub-chapter 15.3.



  

 

Thank you for your 
attention!

Thank you for bearing with me!
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