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Overview
Categorical predictor and outcome variables (Ch. 10)

● χ²-test of association: step-by-step and in jamovi
● χ² goodness-of-fit in jamovi
● McNemar test for Paired Samples in jamovi

Categorical predictor and continuous outcome variables (Ch. 11)
● z-test and One Sample t-test: step-by-step and in jamovi
● Independent Samples t-test
● Paired Samples t-test
● Assumptions and non-parametric alternatives

Continuous predictor and continuous outcome variables (Ch. 12)
● Correlations: step-by step and in jamovi
● Where correlations fail: Anscombe’s quartet
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During this lecture, we are dealing with three large 
categories of analyses. The first one, which are 
analyses where we have a categorical predictor 
and a categorical outcome, may not have gotten 
very much coverage in your B.Sc. statistics course. 
This is one reason, why they get relatively strong 
weight in our crash course.

Another reason for giving them much weight is that 
they are mathematically relatively simple. That is, 
they are suited to introduce concepts behind 
statistics that might be more difficult to teach for the 
more complex methods (even though I still try do 
this to some degree for t-test and correlation).
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The second class of analyses is possibly the one that 
most of you used in your B.Sc. thesis. Here, we 
have methods where we have a categorical 
predictor and a continuous outcome variable (e.g., 
to explore whether certain test scores differ with 
gender or the experimental group the participant 
was in). We cover three different kinds of t-tests 
and the z-test as an introduction. I also briefly 
mention non-parametric alternatives to these tests 
that you use if assumptions to conduct a t-test are 
not met (e.g., if your data are not normally 
distributed).



  

 

Overview
Categorical predictor and outcome variables (Ch. 10)

● χ²-test of association: step-by-step and in jamovi
● χ² goodness-of-fit in jamovi
● McNemar test for Paired Samples in jamovi

Categorical predictor and continuous outcome variables (Ch. 11)
● z-test and One Sample t-test: step-by-step and in jamovi
● Independent Samples t-test
● Paired Samples t-test
● Assumptions and non-parametric alternatives

Continuous predictor and continuous outcome variables (Ch. 12)
● Correlations: step-by step and in jamovi
● Where correlations fail: Anscombe’s quartet

UNIVERSITY OF BERGEN

SLIDE 4SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: STATISTICAL ANALYSES

Finally, the third part is about exploring the relations 
between continuous predictors and continuous 
outcomes.

The word “relation” already indicates that using the 
terms predictor and outcome are a bit misleading. 
With correlations, we assess the relation between 
two variables. We are not capable to say which 
variable 1 “caused” a change in variable 2, whether 
it was the other way around or whether there was 
maybe a third outside variable that “caused” the 
changes in variable 1 and 2.

I will also speak about a special example of variable 
pairs – Anscombe’s quartet – that are correlated 
even though this is mainly based on that 
assumptions for running correlation analyses are 
violated.



  

 

Categorical predictor 
and outcome 
variables (Ch. 10)

Let’s turn to refreshing some basic statistical 
procedures (or to briefly introduce them if you did 
not have them before). And first, we will turn to 
statistical procedures that are used to explore 
relationships between a categorical predictor (= 
independent) variable and a categorical outcome (= 
dependent) variable.



  

 

Introduction
when exploring frequency data, we often are interested whether:

● whether the frequencies in one variable are influenced by 
another (e.g., do more female finish university)
→ χ²-test of association

● several categories occur equally often (e.g., all numbers on 
a dice) → χ²-goodness of fit

● whether a change in frequency occurs (e.g., in health vs. 
sick as consequence of a treatment) → McNemar test
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The class of statistical procedures that I am going to 
introduce now are used to explore relationships 
between a categorical independent (= predictor) 
variable and a categorical dependent (= outcome) 
variable.

Most statistical tests exploring such relationships are 
based upon a χ²-distribution (chi-squared). Basi-
cally, all tests based upon this distribution compare 
whether an empirical distribution of frequencies or 
occurrences is (significantly) different from a 
theoretical expected distribution.
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When exploring such frequency data, we often are 
interested whether: (1) whether the frequencies in 
one variable are influenced by another (e.g., do 
more females finish university); (2) several 
categories occur equally often (e.g., all numbers on 
a dice); or (3) whether a change in frequency 
occurs (e.g., a change in health vs. sick as 
consequence of a treatment over time, considering 
whether you were already healthy or ill).

We use the χ²-test of association for questions of 
type (1), the χ²-goodness of fit to explore questions 
belonging to (2), and the McNemar test for 
questions of type (3).
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To make it easier to understand which test to use lets 
see with which type of data we are dealing for each 
test: For (1), we have two columns with combinati-
ons of data, e.g., for assessing whether participants 
are cured or not after a treatment (vs. a placebo). 
Data would look like (treatment – cured, treatment 
– cured, placebo – not cured, placebo – cured, 
treatment – cured, treatment – not cured, … [with 
treatment / placebo being in the first column and 
cured / not cured in the second]).

For (2), we have one column were different catego-
ries occur with certain frequencies (e.g., heart, 
diamond, club, heart, spade, diamond, …).

For (3) the data assess the same characteristics 
(e.g., an opinion or a health state: healthy or sick) 
at two points in time (e.g., before and after treat-
ment). Data would look like (if the characteristic is 
sick: yes – yes, yes – no, yes – no, no – no, yes – 
no, no – yes, … [also arranged in two columns]).



  

 

χ²-test of association: step-by-step 
● χ²-distribution: compare an observed distribution of 

frequencies with a theoretically expected distribution
● example: new drug (compared to a placebo) × cured 

vs. not cured
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observed cured
treatment yes no total
drug 30 10 40
placebo 10 30 40
total 40 40 80

expected cured
treatment yes no total
drug 20 20 40
placebo 20 20 40
total 40 40 80

Let’s try to do this in a step-by-step fashion, using 
method (1):  the χ²-test of association.

For example, lets assume that you tried out a new 
drug (compared to a placebo) and then assess 
whether this new drug leads to a higher proportion 
of people becoming healthy as a consequence. So, 
let’s say: In the group that received the drug, 30 
participants got healthy while 10 weren’t cured. In 
the placebo group, 10 participants got healthy and 
30 weren’t cured. This distribution is shown in the 
left table. In addition, totals were calculated for all 
rows and columns.



  

 

χ²-test of association: step-by-step 
● observed: row sums, drug-recipients (cured + not cur.)

col. sums, cured (drug + placebo)
● expected: 40 / 80 = 0.5 (rows) · 0.5 (cols) · 80 = 20
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observed cured
treatment yes no total
drug 30 10 40
placebo 10 30 40
total 40 40 80

expected cured
treatment yes no total
drug 20 20 40
placebo 20 20 40
total 40 40 80

Based upon these totals, in the right table is shown 
what theoretically would have been expected 
(given these totals) if all conditions were evenly 
distributed (which is 20 for each condition).

If you wonder, how these 20 came about, think about 
the totals in the rows: the probability for having got 
treatment is 40 / 80 = 0.5 (the probability for the 
placebo-condition is the same). Now, we turn to the 
columns: The probability for being cured is 40 / 80 
= 0.5 (as it is for not cured). That is for the 
combination drug – cured, the expected occurrence 
is 80 · 0.5 · 0.5 = 20.



  

 

χ²-test of association: step-by-step 
● for each cell: 

(observed – expected)² / expected
(30 – 20)² / 20 =  10² / 20 = 100 / 20 = 5
(10 – 20)² / 20 = -10² / 20 = 100 / 20 = 5
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observed cured
treatment yes no total
drug 30 10 40
placebo 10 30 40
total 40 40 80

expected cured
treatment yes no total
drug 20 20 40
placebo 20 20 40
total 40 40 80

That means, under our alternative hypothesis, the 
treatment has an effect and more people are cured, 
we expect an distribution like in the left table.

Under the null hypothesis, there is no effect and the 
expected frequency of occurrences would be 
similar distributed as in the right table.

Now, a  χ²-value is calculated for each cell according 
to the formula (observed – expected)² / expected 
(and afterwards summed up).



  

 

observed cured
treatment yes no total
drug 30 10 40
placebo 10 30 40
total 40 40 80

χ²-test of association: step-by-step 
● summed over all four cells / conditions:

χ² = 5 + 5 + 5 + 5 = 20 – four conditions → df = 4 - 1
● compared to a critical χ² for df = 3, a = 0.05:

20 > 7.815 → reject H0 → drug or placebo affect if cured
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expected cured
treatment yes no total
drug 20 20 40
placebo 20 20 40
total 40 40 80

That is, for the first cell (drug, cured) this is (30 – 20)² 
/ 20 = 100 / 20 = 5. For the second cell (placebo, 
cured) the value is (10 – 20)² / 20 = 100 / 20 = 5. 
The third (drug, not cured) and the fourth cell 
(placebo, not cured) the results are the same as for 
first cell and the second cell (how conveniently I 
chose that example…).



  

 

observed cured
treatment yes no total
drug 30 10 40
placebo 10 30 40
total 40 40 80

χ²-test of association: step-by-step 
● summed over all four cells / conditions:

χ² = 5 + 5 + 5 + 5 = 20 – four conditions → df = 4 - 1
● compared to a critical χ² for df = 3, a = 0.05:

20 > 7.815 → reject H0 → drug or placebo affect if cured

UNIVERSITY OF BERGEN

SLIDE 13SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: STATISTICAL ANALYSES

expected cured
treatment yes no total
drug 20 20 40
placebo 20 20 40
total 40 40 80

The values for all cells are summed up, i.e., χ² = 5 + 5 
+ 5 + 5 = 20. We had four cells / categories (denoted 
k), therefore the degrees of freedom (df) used for 
evaluating this χ²-value are df = k – 1.

Now, we only have to determine if that empirical χ² is 
above the critical threshold were we can reject the 
H0. The critical threshold for α = 0.05 and df = 3 is 
7.815, meaning that the empirical χ² = 20 is far 
above that critical value. We can therefore reject the 
null hypothesis and conclude that our drug made an 
effect on how many people were cured.

When look at the table in the jamovi-book where the 
critical χ²-values are given (Figure 10.3, p. 220; 
Navarro & Foxcroft, 2022) we can see that our 
empirical χ² = 20 would even have been significant 
at α = 0.001 (critical χ² = 16.266 > empirical χ² = 20).



  

 

χ²-test of association: step-by-step 
● repetition with a (little) more complicated example
● rows: 44 / 80 = 0.55

columns: 50 / 80 = 0.625
expected: 0.55 · 0.625 · 80 (= 50 · 44 / 80) = 27.5
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observed cured
treatment yes no total
drug 40 4 44
placebo 10 26 36
total 50 30 80

expected cured
treatment yes no total
drug 27.5 16.5 44
placebo 22.5 13.5 36
total 50 30 80

Now, lets do the same with an example where the 
values are little less evenly distributed. The 
probability of occurrence for the rows are: drugs → 
44 / 80 = 0.55; placebo → 36 / 80 = 0.45.

The probability of occurrence for the columns are: 
cured → 50 / 80 = 0.625; not cured → 30 / 80 = 
0.375.

From these probabilities we can calculate what is 
expected in the cells:

drugs – cured → 0.55 · 0.625 · 80 = 27.5
placebo – cured → 0.45 · 0.625 · 80 = 22.5
drug – not cured → 0.55 · 0.375 · 80 = 16.5
placebo – not cured → 0.45 · 0.375 · 80 = 13.5



  

 

χ²-test of association: step-by-step 
● χ²: (40 – 27.5)² / 27.5 =  12.5² / 27.5 =   5.682

(  4 – 16.5)² / 16.5 = -12.5² / 16.5 =   9.470
(10 – 22.5)² / 22.5 = -12.5² / 22.5 =   6.944
(26 – 13.5)² / 13.5 =  12.5² / 13.5 = 11.574
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observed cured
treatment yes no total
drug 40 4 44
placebo 10 26 36
total 50 30 80

expected cured
treatment yes no total
drug 27.5 16.5 44
placebo 22.5 13.5 36
total 50 30 80

The  χ² with the cells is calculated as shown on the 
slide. Maybe, take the chance to follow the 
calculations on paper, with a calculator or in Excel 
so that you can get a feel for the calculations.



  

 

χ²-test of association: step-by-step 
● χ² = 5.682 + 9.470 + 6.944 + 11.574 = 33.670
● χ² = 33.670 > 7.815 (crit. χ² for α = 0.05, df = 3)
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observed cured
treatment yes no total
drug 40 4 44
placebo 10 26 36
total 50 30 80

expected cured
treatment yes no total
drug 27.5 16.5 44
placebo 22.5 13.5 36
total 50 30 80

Now, we sum up the values we calculated on the 
previous slide: 5.682 + 9.470 + 6.944 + 11.574 = 
33.670.

From before do we know the critical χ² is 7.815 (for α 
= 0.05) and 16.266 (for α = 0.001). The empirical χ² 
is above either of these critical values and the 
effect of our treatment (in comparison with the 
placebo) on how many people were cured is 
statistically highly significant.

That means, given that low p-value, we can be 
relatively certain that we don’t make an error 
rejecting the H0. The H0 assumes no relation 
between our treatment and whether people are 
cured and would result in a distribution like in the 
right table (expected).
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observed cured
treatment yes no total
drug 40 4 44
placebo 10 26 36
total 50 30 80

expected cured
treatment yes no total
drug 27.5 16.5 44
placebo 22.5 13.5 36
total 50 30 80

This demonstrates a very basic principle underlying 
statistical analyses. We compare one case, where 
we assume the distribution could have occurred 
“naturally” (the right “expected”-table) to our 
measured (empirical) distribution of values (the left 
“observed”-table). If the difference is large enough, 
that we can assume that they did not happen “by 
chance”.

That is we – in a way – compare the differences we 
find in our data to what could have happened 
randomly (plus a certain margin of error).

Let’s briefly summarize again what the χ²-test is 
about: It compares an observed to an expected 
frequency distribution (i.e. how often a certain event 
is occurring vs. it is expected to occur if it were “by 
chance”).



  

 

χ²-test of association in jamovi
● download ChiSquared_DrugPlacebo.omv from MittUiB 

→ Modules → Refreshining univariate...
● open it in jamovi:  → Open → This PC☰
● check the first example analysis: Frequencies → 

Contingency Tables → Independent Samples
assign “condition” → Rows, “state” → Columns

● check the second example analysis: Frequencies → 
Contingency Tables → Independent Samples
assign “condition2” → Rows, “state2” → Columns
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Now, lets try to “replicate” the two analyses that I 
demonstrated on the slides. To do this, please 
download the data set from MittUiB → Modules → 
Refreshining univariate…→ 
ChiSquared_DrugPlacebo.csv.

Open jamovi and select  (located in the top-left ☰
corner of the jamovi-window). Choose “Open” → 
“This PC” and go to the place where the you stored 
the downloaded file.

In the data spreadsheet, you will find four columns: 
condition and state are the data from the first 
example, condition2 and state2 those from the 
second.



  

 

χ²-test of association in jamovi
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For replicating the first example analysis above, 
chose Frequencies →  Contingency Tables → χ²-
test of association. If you assign the variable 
named “condition” to Rows and “state” to Columns 
you will get a Contingency Table looking pretty 
much like the left table in the first example on the 
slides above.

The χ²-value that was calculated is exactly the one 
we got in the first example: 20 and the p-value is 
shown to be < .0001.

Please note, that your value might show as < .001 
(i.e., only having three decimals). This is a setting, 
not a mistake. You can change that setting in the 
options    (the three small dots in the top-right 
corner of the jamovi-window). My settings are: 
Number format: 3 dp (decimal places) and p-value 
format: 4 dp.



  

 

χ²-test of association in jamovi
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The second example analysis is replicated using 
Frequencies →  Contingency Tables → χ²-test of 
association and assigning “condition2” to Rows and 
“state2” to Columns. Again, the χ²-value is the 
same as we calculated on the slides. Try one last 
thing. Revert the assignment of “condition2” and 
“state2”, i.e., assign “state2” to Rows and 
“condition2” to Columns. You will see that the  χ²-
value stays the same. That means it doesn’t matter 
which variable you assign to rows or columns (and 
it shouldn’t matter).

You can watch Barton Poulson’s videos if you want to 
have an explanation from a different angle: go to 
https://datalab.cc/jamovi/, click on      (top-right in 
the video) and select video 45 for a general 
introduction into all method in the “Frequencies” 
menu and video 48 for an introduction into the χ²-
test of association we just conducted.



  

 

χ² goodness-of-fit in jamovi
main difference to the χ²-test of association:

● the χ²-test of association uses two variables and 
determines the expected frequency based on how often 
each step (e.g., cured vs. not cured) occurs (i.e., what 
is expected is based upon the totals in rows / columns)

● the χ² goodness-of-fit uses one variable with n trials; it 
assumes that all possible events occur with the same 
probability / frequency
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Compared to the χ²-test of association, the χ² 
goodness-of-fit test is a bit simpler but follows the 
same principles.

For the χ²-test of association we conducted before, 
we had cross-tabulated the different steps within 
two conditions (placebo vs. drugs; cured vs. not 
cured) and derived the expected values from the 
totals in the rows and columns. 

For the χ² goodness-of-fit, the expected occurrences 
are based on the number of trials and the number 
of categories in the data. Taking our deck of cards 
and assuming 200 trials, we expect that each suit 
(clubs, diamonds, hearts, spades) should be drawn 
about 50 times (assuming that it is a “normal” deck 
that wasn’t faked).



  

 

χ² goodness-of-fit in jamovi
● ☰ → Open → Data Library → learning statistics with jamovi” 

(lsj-data) → Randomness
can’t find it? install lsj-data (cf. Introduction lecture)

● use the R-code (details on the next slide)
● Frequencies → One Sample Proportion Test →

N outcomes (χ² Goodness of fit)
assign “choice_1” to Variable

● Frequencies → One Sample Proportion Test →
N outcomes (χ² Goodness of fit)
assign “choice_2” to Variable
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Now we turn to an example for the χ² goodness-of-fit 
test that is described in the jamovi-book (Navarro & 
Foxcroft, 2022; Chapter  10.1.1 to 10.1.7, p. 212 – 
221).

For conducting that analysis, we open the 
Randomness-dataset. Choose      → Open → Data 
Library and enter the folder “learning statistics with 
jamovi” (lsj-data). If you can’t find it, did you 
possibly forget to install the lsj-data module (see 
the Introduction lecture for how to do that)?

The Randomness-data-set contains three columns 
(of which the first “id” isn’t of particular interest to 
us). The other two columns (“choice_1”, “choice_2”) 
contain data about which suit of cards (diamonds, 
hearts, clubs, spades) was drawn from a deck by 
different participants. We would like to determine 
whether each suit (clubs, diamonds, hearts, 
spades) occurs with equal frequency.



  

 

χ² goodness-of-fit in jamovi
● “R”-icon → Rj editor

can’t find it? install the Rj module
● remove the code that is in the editor (# summary)
● download Syntax_ChiSquared.R from MittUiB → Modules 

→ Refreshing..., copy & paste the text
from this file to the editor

● Cogwheel (next to “Play”-symbol) →
set Output to “Show code and output”

● run the code with “Play” (green triangle)
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It is also possible to run a chi-squared statistics 
manually, using R-syntax (you will be surprised, it is 
much easier than you might expect).

Download ChiSquare.R from MittUiB → Modules → 
Refreshing... → Syntax_ChiSquared.R and open it 
in a text editor. Open Rj you click on the R-symbol 
in the menu bar and choose Rj editor (if you can’t 
find it, ensure that you installed the module). There 
is some R-code written (# summary...); please 
remove that. Instead copy and paste the content of  
Syntax_ChiSquared.R into it.

Click on the cogwheel (left of the green triangle) in 
the Rj-window and select Output – “Show code and 
output” (it would also work with “Show output” but it 
is easier if you have the R-commands, my 
comments and the results in the output instead of 
the results alone). You now run the syntax by 
pressing the green triangle (“Play”).



  

 

χ² goodness-of-fit in jamovi
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● “R”-icon → Rj editor
can’t find it? install the Rj module

● remove the code that is in the editor (# summary)
● download Syntax_ChiSquared.R from MittUiB → Modules 

→ Refreshing..., copy & paste the text
from this file to the editor

● Cogwheel (next to “Play”-symbol) →
set Output to “Show code and output”

● run the code with “Play” (green triangle)

You will see that the χ² and p-values are the same as 
when running the analyses through the graphical 
user interface in jamovi.

There is another thing that you can try. If you go to l. 
19 of the script: #(obs_1 - exp) and remove the #-
sign from the begin of the line, you can stepwise 
follow the analysis in chapter 10.1.3. of the jamovi-
book (p. 214 – 215). Please note that the l. 19 is in 
the table on p. 214. Now put the # back at the begin 
of l. 19, remove the # from l. 20 and hit play again. 
Continue until you reached l. 22

One thing you might realize is that R-code (hopefully) 
appears less frightening than you possibly 
anticipated.

Among Barton Poulson’s videos (datalab.cc/jamovi), 
video 47 provides an introduction into the χ²- 
goodness-of-fit test we just conducted.



  

 

χ² goodness-of-fit in jamovi
UNIVERSITY OF BERGEN

SLIDE 25SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: STATISTICAL ANALYSES

To do this in jamovi, we use Frequencies → N 
outcomes (χ² Goodness of fit), and assign choice_1 
to Variable. Create a new analysis by repeating that 
but this time assign choice_2 to Variable. Now, you 
should see two outputs.

In the first, there are two tables, one saying 
“Proportions – choice_1” and another saying “χ² 
Goodness of Fit”. The other output contains the 
tables “Proportions – choice_2” and another with 
the χ²-test.

The χ²-value are 8.440 for choice_1 (the same result 
as in the jamovi-book, p. 215) and 9.000 for 
choice_2. Both values are significant (0.0377 for 
choice_1, 0.0293 for choice_2).



  

 

McNemar test in jamovi
● used when we have repeated measurements that 

are dependent of each other (e.g., how many 
people were cured after an intervention or how 
many people changed their opinions)

● key to distinguish McNemar from other χ²-tests is 
the notion of dependence: a person already has 
an opinion or is healthy vs. sick ↔ when we draw 
a card, the card is independent of the card before
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In some cases, we have repeated measurements 
that are dependent of each other (e.g., because we 
want to assess how many people were cured after 
an intervention or how opinions changed over 
time). In such case, we can use the McNemar-test 
to assess that.

When comparing the McNemar-test to the χ²-test of 
association we conducted before, the key 
distinction is the notion of independence: With the 
Randomness-example and the different suits of 
cards, the first card that is drawn is independent of 
the second one.

In contrast, with the AGPP-example, a person 
already has a political conviction. Therefore, the 
second poll is dependent on what opinion or 
conviction the person had in the beginning.



  

 

McNemar test in jamovi
● ☰ → Open → Data Library → learning statistics 

with jamovi” (lsj-data) → AGPP
(containing opinions / claims whether to vote for 
the party before and after an advertisement)

● Frequencies → Contingency Tables → Paired 
Samples (McNemar test)
assign “response.before” to rows and 
“response.after” to colunms
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To conduct this analysis in jamovi, we open the 
AGPP-dataset. That dataset contains three 
columns, two of which we are using in our analysis 
– response.before and response.after – saying how 
opinions of people (“How likely are you going to 
vote for our party?”) changed in connection with 
seeing advertisiment for the party.

We click on “Frequencies” → “Paired Samples 
(McNemar test)” and assign response.before to 
rows and response.after to colunms.



  

 

McNemar test in jamovi
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Why is this not the outcome 
the party anticipated?

We got a highly significant result: χ² = 13.33, p < 
0.001.

However, although we can say that opinions 
changed, possibly not in the direction the party 
intended. Whereas 30 people would have voted for 
the party before seeing the advertisement, only 10 
would do so afterwards. Whereas the party lost 25 
of its original voters, they got only 5 new ones.

Among Barton Poulson’s videos, video 49 provides 
an introduction into the McNemar test we just 
conducted.

There are another two helpful section in Chapter 10 
of the jamovi-book (10.1.9 and 10.1.10). These 
sections describe how to report results like the one 
from the  χ²-test in a manuscript and make some 
comments on statistical notation.



  

 

Categorical predictor 
and continuous 
outcome variables 
(Ch. 11)



  

 

Introduction
● t-tests explore whether a categorical predictor (with 

two steps) affects values in a continuous variable
● three types:

1. One Sample t-test: does the mean in a sample differ 
from a test value?

2. Independent Samples t-test: are the values in two 
groups different from another?

3. Paired Samples t-test: do the values change 
between a first and a second measurement?
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When we assess the influence of a categorical 
predictor with two steps (e.g., male-female) onto a 
continuous variable, we typically use a t-test. The 
two categories can also be two measurement-time-
points (e.g., before vs. after treatment).

For variables that differ between participants (a so-
called between-subjects-factor) we use the 
Independent samples t-tests (since the 
measurements are collected e.g., from one male 
participant which is independent from another 
female participant and yet from another male 
participant).

For variables that differ within a participant (a so-
called within-subject-factor), we use a Paired 
Samples t-test (since we assess the difference in a 
pair of variables, e.g., of a measurement before vs. 
after an intervention).

However, we will first turn to what is called a One 
Sample t-test.



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

The basic principle behind the One Sample t-test is 
more easily explained using the z-test.

The basis for the z-test is that we know mean and 
standard deviation for a certain variable in the 
population. This condition is only fulfilled on very 
few occasions, one being standardized tests (e.g., 
IQ tests) which are normed (typically to have a 
population mean of 100 and a standard deviation of 
15 points).

Given that these conditions are rarely fulfilled, the z-
test is almost never used in reality, but – given that 
it follows the same logic as the One Sample t-test – 
is often used to introduce the concept and to serve 
didactic purposes.



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

The general idea and procedure of the z-test are 
based upon the Central Limit Theorem.

It assumes that:
1)   The distribution of measurements recorded from 

a sample corresponds approximately to the 
normal distribution.

2)   The mean (average) of almost any set of 
independent and randomly generated variables 
(X) converges to the mean in the underlying 
population (µ) from which the sample is taken.

3)   The standard deviation in the sample (s) 
converges to the standard deviation in the 
population (σ). However, the smaller the sample, 
the larger the standard deviation (as we have a 
higher chance to take measurements that fall 
within the more extreme ends [tails] of the 
distribution).



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

Therefore, we have to “correct” the standard deviation 
in the population (σ) with this formula

The formula says that we have to multiply
the standard deviation by (n -1) and divide this by n. 
This makes it smaller. The fewer participants the 
more σ is corrected down. This is based upon the 
assumption that extreme values (leading to large 
standard deviation is the sample) are more likely 
when the sample is small (assumption 3 of the 
Central Limit Theorem on the previous slide).

The central formula for the z-test is: 
Above the fraction bar, the mean the “real” mean of a 

characteristic in the population (µ) and mean of the 
characteristic measured in the sample (x) are sub-
tracted. This is set in relation to the error we likely 
make when taking these measurements (the part 
below the fraction bar). It is the standard deviation in 
the population (σ) divided by the square root of the 
sample size (n).

σ = s ⋅
(n − 1)

n

z =
μ − x̄
σ / √n



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

So, that was a lot of rather complex sentences and 
some formulas.

Let’s try to take this into praxis. Using the formula 

is basically all we need.
We subtract the mean in the sample (x) from the 

known population mean (µ) and set this into 
relation to the standard error that we are likely 
going to make when comparing the mean in sample 
and population (σ / square root of n).

The rationale is as follows: We know that when we 
measure the mean in our sample it always can only 
be an estimate or an approximation of the “true” 
value in the population.

z =
μ − x̄
σ / √n



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

We also know that the standard deviation in the 
population makes the mean that we get for our 
sample “jitter” a litter around the “true” mean in the 
population. The larger our sample, the better 
estimates the mean we measured in our sample 
the mean in the population, hence the lower is the 
error we make with this estimation.

As a consequence we set the standard deviation in 
the population in relation to (i.e., divide it by) the 
square root of the sample size.



  

 

z-test: step-by-step
● “model” for the principle of the One Sample t-test
● we know mean and std. deviation for

the characteristic in the population
● we assess whether our sample mean

is different from that in the population
● idea and procedure are based upon the Central Limit 

Theorem: the distribution of values follows a normal 
distribution; the larger the sample, the better 
estimates the sample mean the population mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

The standard deviation in the population is so to say 
a natural “source” of variation and for the error we 
make when estimating the mean in the population 
(because the sample we take will have values 
around the mean and vary according to the 
standard deviation in the population).

We now compare this error that occurred “naturally” 
or “randomly” with the difference we obtained 
between the mean in our sample and the mean in 
the population. If the latter difference is much larger 
than the “natural” variation, we can assume that the 
difference is “real” and has (statistical) significance.



  

 

z-test: step-by-step
● open zeppo – Example analysis.omv under MittUiB 

→ Modules → Refreshing
univariate...

● go to the part 
click the cogwheel (next to
“Play”), set Output to “Show
code and output” and hit “Play”,
check output / comments
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For a demonstration of the basic principles, I 
prepared a R-script. Download zeppo – Example 
analysis.omv from MittUiB → Modules → 
Refreshing univariate…

This example already contains the R-code. Go to the 
part that contains the R output (under the heading 
“z-test: step-by-step” and click on the code 
underneath. This should open the Rj Editor and you 
can use the green triangle symbol (“Play”) to run 
the code. Ensure that you changed the Output to 
“Show code and output” using the cogwheel in Rj.

The logic of the script follow the z-test that is 
described on p. 242 – 246 of the jamovi-book 
(Navarro & Foxcroft, 2022).



  

 

z-test: step-by-step
● for a visualization of the Central Limit theorem

https://garthtarr.shinyapps.io/statstar/
→ Inference → Central Limit Theorem

● change the slider “Sample size” and check how 
the green distribution changes – narrower, wider? 
what happens to mean and std. deviation?
can you say why?
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For those, who want to play a little around with this 
concepts and the mathematics beyond it in a visual 
way, use the demonstration on Garth Tarr’s 
webpage https://garthtarr.shinyapps.io/statstar/ → 
Inference → Central Limit Theorem.

This visualization simulates what will happen if you 
take a sample of size n (this can be set with the 
slider under “Sample size:”) and repeat collecting 
data from that sample several times (this can be set 
with Number of samples:”).

https://garthtarr.shinyapps.io/statstar/


  

 

z-test: step-by-step
● for a visualization of the Central Limit theorem

https://garthtarr.shinyapps.io/statstar/
→ Inference → Central Limit Theorem

● change the slider “Sample size” and check how 
the green distribution changes – narrower, wider? 
what happens to mean and std. deviation?
can you say why?
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Play a little around with these values.
It will show you two things (I used Sample size: 20 

and Number of samples: 200):
(1) the mean of x in the green figure (showing the 

distribution of means in the sample you took) is 
always quite close to the mean in the population – 
typically you will get differences in the second 
decimal (e.g., -0.08 or 0.02, the most extreme value 
I got was 0.30 which is still quite small given that 
the standard deviation in the population is 10).

(2) The sd of x (SE – denoting the standard error) is 
around between 2.2 and 2.3 (i.e., close to 10 / √20 
= 2.24). You can “repeat” that with moving the 
“Number of samples”-slider a little up and down, the 
values for “mean of x” and “sd of x” will vary a bit, 
but not substantially.

https://garthtarr.shinyapps.io/statstar/


  

 

z-test: step-by-step
● for a visualization of the Central Limit theorem

https://garthtarr.shinyapps.io/statstar/
→ Inference → Central Limit Theorem

● change the slider “Sample size” and check how 
the green distribution changes – narrower, wider? 
what happens to mean and std. deviation?
can you say why?
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Now, change the slider “Sample size” from 20 to 40. 
You will see that “mean of x” will vary a bit (but still 
be around 0) whereas “sd of x” goes down from 
between 2.2 and 2.3 (as we had for n=20) to 
between 1.5 and 1.6 (which is close to 10 / √40 = 
1.58).

https://garthtarr.shinyapps.io/statstar/


  

 

One Sample t-test: step-by-step
● assume we don’t know mean and std. deviation 

in the population, but estimate it from the sample
→ uncertainty we have to correct for
→ t-distribution (instead of z-distribution)
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value of t−statistic

Now, lets continue with a One Sample t-test. A 
essential difference to the z-test is that we DON’T 
assume this time that we knew the “true” value of 
the standard deviation in the population.

What we do instead is that we estimate the standard 
deviation in the population using the standard 
deviation in our sample. Such estimation introduces 
some degree of uncertainty (we estimate, we don’t 
know for sure) and we therefore have to apply 
some form of correction.



  

 

One Sample t-test: step-by-step
● assume we don’t know mean and std. deviation 

in the population, but estimate it from the sample
→ uncertainty we have to correct for
→ t-distribution (instead of z-distribution)
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One way to do that is to use a (slightly different) 
distribution the so-called t-distribution. At the first 
glance, this distribution very much looks like a 
normal distribution but it is a little lower in the 
middle and a little higher on the tails. It also 
introduces degrees of freedom (df) and changes it’s 
shape depending on how many degrees of freedom 
we have (whereas the z-distribution always is the 
same). The degrees of freedom are the dependent 
on the size of your sample (df  = n – 1).

The larger the degrees of freedom get, the more the 
t-distribution looks like a z-distribution (i.e., a 
standard normal distribution). For df > 30 it is (more 
or less) impossible to see a difference to a standard 
normal distribution.



  

 

One Sample t-test: step-by-step
● assume we don’t know mean and std. deviation 

in the population, but estimate it from the sample
→ uncertainty we have to correct for
→ t-distribution (instead of z-distribution)
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If we now compare the formula for the t-test is based 
upon (left) with that from the z-test (right), it is easy 
to see that they pretty much look the same:

The only exception is that for the t-test, we are using 
an estimate for the standard deviation in the 
population (which we derive from the standard 
deviation in the sample) – a σ with a little “hat” on it 
– whereas in the z-test, we know the “true” value σ.

t =
μ − x̄
σ̂ / √n

z =
μ − x̄
σ / √n



  

 

One Sample t-test: step-by-step
●  → ☰ Open → Data Library → learning statistics 

with jamovi (lsj-data) → Zeppo
● T-Tests → One Sample t-test

assign “x” to “Dependent variable”
enter 67.5 in “Test value”
tick “Shapiro-Wilk” and check for normality
tick “Mean difference”, “Confidence interval”, 
“Effect size” and “Descriptives”
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To conduct a One Sample t-test in jamovi, we first 
have to open a data file. This can be found via 
→ Open → “Data Library” → “learning statistics 
with jamovi” (lsj-data) → Zeppo (hint, type ze in the 
search field above the file list to find the file easier).

Then, click on the “T-Tests”-icon and choose “One 
Sample t-test”.
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Assign “x” to “Dependent variable”. Now, we have to 
enter the population mean – 67.5 – under “Test 
value” (left column, middle, under “Hypothesis”). 
Let’s briefly have a look on the output we got a 
t(19) = 2.255 (meaning a t value that was based on 
a sample with 19 degrees of freedom), p = 0.036 
(which is significant using α = 0.05).
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The t-test has the assumption that the data we are 
using follow a normal distribution. That can be 
checked with ticking “Normality” (right column, 
middle, under “Assumption Tests”). The output has 
a quite high p-value (0.5856) which is not 
significant. This indicates that the assumption of 
normality is not violated: For Shapiro-Wilk, a low 
p-value would have indicated that the distribution in 
our sample [significantly] differs from a standard 
normal distribution. If the p-value is high, it 
indicates that our sample distribution is rather in 
accordance with a normal distribution.

This doesn’t give us reason for concern about 
normality.
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We can now ask for additional output by ticking 
“Mean difference”, “Confidence interval”, “Effect 
size” and “Descriptives”.

This gives us a mean difference of 4.8, a confidence 
interval of [0.344 9.256] and a Cohen’s d of 0.504.

This means the we have a mean difference of 4.8 
points, which with 95% probability falls within a 
confidence interval between 0.344 and 9.256.

That is, based upon what can be expected given the 
data in the current sample, we expect that (if we 
took the measurement again and again) in 95% the 
mean score of psychology students would be at 
least 67.5 + 0.344 = 67.844 and at maximum 67.5 
+ 9.256 = 76.756.

Please note that these values are relative to the test 
score we entered, whereas it is common to report 
the confidence interval in square brackets, like CI95 
= [0.344 9.256]. Finally, the Cohen’s d (0.504) 
indicates a moderate effect size.
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In a results section we could report this like:
“With a mean grade of 72.3, the psychology students 

scored on average 4.80 points higher than the 
average grade of 67.5 (t(19) = 2.25, p = 0.036, CI95 
= [0.344 9.256], Cohen’s d = 0.504).”



  

 

Independent Samples t-test in jamovi
● most commonly used form of the t-test
● used to compare two groups of observations
● mathematically more complex (than One-Sample 

t-test)
➢ have to consider (pool)

variances in two groups
➢ additional assumption:

homogeneity of variances

UNIVERSITY OF BERGEN

SLIDE 49SEBASTIAN.JENTSCHKE@UIB.NOREFRESHER: STATISTICAL ANALYSES

µ

null hypothesis

value of X

µ1

µ2

alternative hypothesis

value of X

The possibly most common example of the t-test is 
the Independent Samples t-test. This test is used to 
compare two samples / groups of observations.

To say two sentences regarding the mathematics 
behind the t-test: Different from what we did in the 
One Sample t-test (where we had to deal only with 
one standard deviation, i.e., the square root of the 
variance, σ). Now, comparing two groups, we have 
to deal with the variances from both groups which 
we have to combine (pool). The formulas are a little 
complex and can be found at the bottom of p. 255 
and in the box in the middle of p. 257.



  

 

Independent Samples t-test in jamovi
●  → ☰ Open → Data Library → learning statistics with

jamovi (lsj-data) → Harpo
● T-Tests → Independent Samples t-test

assign “grade” to “Dependent variable” and
”tutor” to “Grouping variable”
tick “Normality (Shapiro-Wilk)” and “Equality of variances”
tick “Welch’s”
tick “Mean difference”, “Effect size”, “Confidence interval” 
and “Descriptives”
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The data file used in the jamovi-book (Navarro & 
Foxcroft, 2022; p. 252 – 263) reports 33 test scores 
from a class with two different tutors. We now 
would like to know, who of them is the better tutor. 
In order to do this, open the harpo file. Use  → ☰
Open → Data Library and choose harpo (hint: type 
ha in the search field).

Then you click on “T-tests” → “Independent Samples 
T-Test” and assign “grade” to “Dependent variable” 
and “tutor” to “Grouping variable”.
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We can see that there seems to be a difference 
between the two tutors: we obtain a t-value of 2.115 
and a p of 0.0425 (just significant).

There are three assumptions for the Independent 
Samples t-test: Normality, Independence, and 
Homogeneity of variance.

The first can be checked by ticking “Normality test” 
under “Assumption Checks”. This reveals a p-value 
of 0.8266, indicating that there is no deviation from 
a normal distribution.

For assessing the second, Independence, we need 
to know a little more about the sample. We should 
be fine, as long as the measurements are collected 
from different participants and it is ensured that 
participants were not measured twice (e.g., by 
having to change the tutor in the middle of the 
semester).
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For the third Homogeneity of variances, the fact 
that we have to deal with variances from two 
different groups also means that we have to ensure 
that the variances in the two groups are as equal as 
possible.

In order to check that, we tick “Homogeneity test” 
under “Assumption Checks”. A new table appears 
showing the results from Levene's Test of Equality 
of Variances. The p-value is not significant (p = 
0.1251) indicating that the variances and the two 
groups are not significantly different.
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However, that p-value is relatively low. To be on the 
safe side, we may decide to use Welch’s instead of 
(or in addition to Student’s). Just tick the box with 
“Welch’s” (under “Tests”) to switch it on. Welch’s is 
another type of t-test that applies a correction for 
Inhomogeneity of variances. In R, using Welch’s is 
even the default.

After applying the correction, the difference between 
the tutors isn’t significant any more. This also nicely 
illustrates how arbitrary the threshold α = 0.05 is. 
And the threshold is not missed by a large margin, 
it is just a little above (p = 0.0536).

We are now in a bit of a dilemma. The Homogeneity 
of variances is given (p = 0.1251 is clearly above 
the threshold of α = 0.05), and the p-value for the 
group difference based on Student’s t is just 
significant. Yet, “Welch’s” is the more conservative 
(i.e. safer) measure.
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In the hope for making a more informed decision, we 
can continue to ask for further information, ticking 
“Mean difference” (and its “Confidence interval”), 
“Effect size”, and “Descriptives” (all under 
“Additional statistics”).

Turning to the table “Descriptive Statistics” to better 
understand how the two groups of students differ 
from each other, we see that students in 
Anastasia’s group got higher test scores compared 
to the students in Bernadette’s group. The standard 
deviations in Anastasia’s group (8.999) are about 
1.6-times as high as those in  Bernadette’s group 
(5.775). Since the variance is the standard 
deviation squared, the difference in variances 
between groups is about 2.5. That contributes to a 
better understanding of the results we got when 
correcting for unequal variances using Welch’s.
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We could now report something like “The students in  
Anastasia’s group had a group mean of 74.533 in 
their test scores which was higher than the test 
scores in Bernadette’s group where students got on 
average 69.056 points. Standard deviations in the 
two groups differed considerably and were about 
1.6-times higher in Anastasia’s group (8.999) than 
in Bernadette’s group (5.775). However, the 
Levene’s test for Equality of Variances was not 
significant: F(1,31) = 2.485, p = 0.1251. We therefore 
chose Student’s t to compare the difference 
between the two groups: t(31) = 2.115, p = 0.0425, 
CI95 = [0.197 10.759], Cohen’s d = 0.740.

It possibly might be warranted to mention in addition 
that if Welch’s t would have been used to account 
for inhomogeneous variances, the difference would 
have missed significance by a little margin (p = 
0.0536).



  

 

Independent Samples t-test in jamovi
for those who are brave at heart:

● download Syntax_t-test_Independent.R from MittUiB → 
Files → Data sets → Examples4jamovi

● click “R” → “Rj editor”, remove the syntax in it (# summary) 
and copy-and-paste the downloaded file
click the cogwheel, set “Output” to “show code and output” 
and press “Play”

● check syntax and output, esp. check the comments and try 
to compare the formulas with those in the book (page 
numbers are given in the comments)
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For those of you who are in for a bit of self-
tormenting, I created also an R-script to calculate 
the t-values and the degrees of freedom using 
Student’s and Welch’s approach.

However, I am afraid, it is a bit complex and maybe 
not too didactic. To some degree, it served me to 
understand the maths behind the tests better.

Those, who are brave enough can find the file under: 
MittUiB → Files → Data sets → Examples4jamovi 
→ Syntax_t-test_Independent.R



  

 

Paired Samples t-test in jamovi
● two measurement within the same person, e.g., a 

measurement before and after the intervention
● mathematically more like the One Sample t-test 

(the difference between the variables is used)
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There is one last category of t-tests, called Paired 
Samples t-test. It is used if we have two 
measurement within the same person, e.g., a 
measurement before and after the intervention.

This is called a repeated measures design and we 
can use a Paired Samples t-test for exploring 
changes between these two measurements over 
time. The test compares these two measurements 
(within one person) by assessing whether the 
difference (Di = Xi1 – Xi2) is significant.

Given that we now only have to deal with the 
variation within one group, the calculations (shown 
on p. 265 and 266 in the jamovi-book; Navarro & 
Foxcroft, 2019) are very much like those for the 
One Sample t-test (i.e., relatively easy again, much 
less complicated as those for the Independent 
Samples t-test where we had to pool variances).



  

 

●  → ☰ Open → Data Library → learning statistics with
jamovi (lsj-data) → Chico

● T-Tests → Paired Samples t-test
mark “grade_test1” and “grade_test2” (Shift + mouse click) and
assign them to “Dependent variable” and
”tutor” to “Grouping variable”
tick “Normality (Shapiro-Wilk)” and “Equality of variances”
tick “Welch’s”
tick “Mean difference”, “Effect size”, “Confidence interval” and 
“Descriptives”
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Paired Samples t-test in jamovi

The data set that is used to demonstrate the test in 
the jamovi-book (p. 264) is about a teacher, Dr 
Chico, where the designation “evil lecturer” (that 
you might remember from chapter 1 in Andy Fields 
book: “Why is my evil lecturer forcing me to learn 
statistics?”) is rather appropriate. He runs a very 
hard class. What he does is to have two exams, 
one at the beginning, one at the end. The first test 
is supposed to be a bit of a “wake up call” for 
students. The idea is that after having got 
unsatisfactory results in the first test, students will 
put in effort and better prepare for the second test.

We open the dataset using  → “Open” → “Data ☰
Library” → “learning statistics with jamovi” (lsj-data) 
→ “chico” (please note that there is also a chico2-
dataset; don’t choose that).
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To see whether Dr. Chico’s rationale (the first test is a 
wake-up call and the students prepare better for the 
second) is working and the increase from the first to 
the second test is statistically significant, we click 
on “T-Tests” → “Paired Samples T-Test” select both 
(click on both while holding the Shift or the Ctrl-key) 
and assign them to “Paired Variables”. The 
difference is highly significant: t(19) = -6.475, p < 
0.001. 

Strictly speaking, we are dealing with a directed 
hypothesis here: Dr Chico expected an increase in 
grade from the first to the second test, so we could 
change “Measure 1  ≠ Measure 2” into “Measure 1 
< Measure 2” (this, however, doesn’t change 
anything since the p-value already is very low).
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Now, we tick “Normality (Shapiro-Wilk)” (under 
“Assumption Checks”). The p-value for Shapiro-
Wilk is 0.6778 and we therefore have no reason to 
doubt that the data are normally distributed. 

We then tick “Mean difference”, “Effect size” and 
“Confidence interval” (under “Additional Statistics”). 
When looking at the “Mean difference”, we see that 
it is quite small, even though the test is so highly 
statistically significant and even though the effect 
size is also considerable (1.448, when a Cohen’s d 
of 0.8 is the threshold for a “large” effect size). 
Briefly checking the Standard Deviation for the two 
variables in the table “Descriptive statistics” 
confirms that there is no reason for concern either.
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We could report these results with a sentence like: 
“Students increased their performance from the first 
(M = 56.980, SD = 6.62) to the second test (M = 
58.39, SD = 6.41). The difference between the tests 
(M = -1.405) was highly significant:  t(19) = -6.475, 
p < 0.001, CI95 = [-1.86 -0.95], Cohen’s d = -1.45.



  

 

Assumptions, non-parametric altern.
● t-tests have assumptions: all require 

normality, the Independ. Samples t-
test Equivalence of Variances

● easily check whether these 
assumptions are met with the tests 
under “Assumption Checks”

● if assumptions are not met, you can 
use non-parametric methods, e.g., 
Wilcoxon or Mann-Whitney U; these 
are the last entry under “Tests”
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Finally, a couple of words regarding the assumptions 
of the different classes of t-tests and what we could 
do if one of these assumptions is violated.

Generally, and this is also one reason why I find 
jamovi so logic and didactic, has each of the tests 
options to check the necessary assumptions easily 
from within the user interface of the test itself: 
There is always a header (or for the more complex 
tests such as ANOVAs it is a drop-down-menu) 
where you have all necessary assumption tests in 
one place.



  

 

Assumptions, non-parametric altern.
● t-tests have assumptions: all require 

normality, the Independ. Samples t-
test Equivalence of Variances

● easily check whether these 
assumptions are met with the tests 
under “Assumption Checks”

● if assumptions are not met, you can 
use non-parametric methods, e.g., 
Wilcoxon or Mann-Whitney U; these 
are the last entry under “Tests”
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For One Sample and Paired Sample t-tests, the two 
assumptions we have to assess are: (1) 
Independence and (2) Normality.

As I mentioned before, “Independence” asks whether 
we can assume that each observation is a 
completely random sample from the population that 
you’re interested in. That assumption can’t be 
tested but that you have to consider it when 
designing your experiments and collecting your 
data. For the datasets we are dealing with (where 
you haven’t been involved in design and data 
collected), we just have to assume that the 
assumption isn’t violated.



  

 

Assumptions, non-parametric altern.
● t-tests have assumptions: all require 

normality, the Independ. Samples t-
test Equivalence of Variances

● easily check whether these 
assumptions are met with the tests 
under “Assumption Checks”

● if assumptions are not met, you can 
use non-parametric methods, e.g., 
Wilcoxon or Mann-Whitney U; these 
are the last entry under “Tests”
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Normality can easily be assessed by ticking 
“Normality (Shapiro-Wilk)” and assessing the p-
values in the “Test of Normality”-table. If those are 
significant or close to significance (p < 0.1), it is 
possible safer to consider non-parametric analyses 
(described on the next slide).

For the Independent Samples t-test, we have an 
additional assumption “Homogeneity of Variances”. 
As I said, when demonstrating the test before, you 
assess that by ticking “Equality of Variances” (also 
under “Assumption Checks”) and depending on 
whether the p-value in the “Test of Equality of 
Variances (Levene’s)”-table is significant (or close 
to; p < 0.1), decide to untick “Student’s t” and to tick 
“Welch’s t” (under “Tests”) which is correcting for 
unequal variances.



  

 

Assumptions, non-parametric altern.
● t-tests have assumptions: all require 

normality, the Independ. Samples t-
test Equivalence of Variances

● easily check whether these 
assumptions are met with the tests 
under “Assumption Checks”

● if assumptions are not met, you can 
use non-parametric methods, e.g., 
Wilcoxon or Mann-Whitney U; these 
are the last entry under “Tests”
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Especially, if the assumption of normality is violated, it 
is recommended to use so-called non-parametric 
methods or analyses.

For the One Sample and the Paired Samples t-test 
you would have to tick “Wilcoxon rank” (under 
“Tests”), for the Independent Samples t-test you 
have to tick “Mann-Whitney U”. In that case, it is 
possibly wise to untick the parametric analyses 
(“Student’s t” and “Welch’s t”) to keep the output 
clean and to be less confusing.



  

 

Assumptions, non-parametric altern.
● t-tests have assumptions: all require 

normality, the Independ. Samples t-
test Equivalence of Variances

● easily check whether these 
assumptions are met with the tests 
under “Assumption Checks”

● if assumptions are not met, you can 
use non-parametric methods, e.g., 
Wilcoxon or Mann-Whitney U; these 
are the last entry under “Tests”
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One advantage of non-parametric methods is that 
you can use them without having to consider 
whether certain assumptions are met.

That is, you can always use non-parametric methods 
(Wilcoxon, Mann-Whitney, etc.) to analyse data that 
in principle also would have allowed to use 
parametric methods (t-tests, etc.).

The reason, why we not just use non-parametric 
methods for all analyses are: (1) they usually are 
more conservative and less powerful than their 
parametric equivalents (it is more difficult to get 
significant results using non-parametric methods); 
and (2) you typically can explore more complex 
statistical models using parametric methods (e.g., it 
is not possible to explore two or more factors using 
non-parametric methods, whereas you can easily 
do this using an ANOVA).



  

 

Continuous predictor 
and continuous 
outcome variables 
(Ch. 12)

If we are interested in exploring relationships 
between continuous variables, the easiest way of 
doing this is calculating a correlation between these 
variables. There is another way, which is visualizing 
the two variables in a scatter plot. You can select 
this visualization (under “Plot”) when using the 
“Correlation Matrix”-analysis in jamovi.



  

 

Correlations: step-by step
● correlations can be used to explore relationships 

between continuous variables
● correlation coefficients (r) can range from -1 to 1

0 < r < 1 → positive correlation
-1 < r < 0 → negative correlation

● calculated by multiplying the position of a person 
(relative to the mean) in the first variable and the 
position (relative to the mean) in the second variable
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A correlation coefficient (i.e., the statistics we used to 
describe the strength of such a relation between 
variables) can take values between -1 and 1.

If we have a correlation coefficient between 0 and 1 
we speak of a positive correlation. In that case, the 
values in the two variables change in the same 
direction, i.e., one person who has a variable value 
larger than the mean in the first variable is 
expected to have a variable value above the mean 
in the second variable too.

If we have a correlation coefficient between 0 and -1 
we speak of a negative correlation. In that case, the 
values in the two variables change in opposite 
direction, i.e., one person who has a variable value 
larger than the mean in the first variable is 
expected to have a variable value below the mean 
in the second variable.



  

 

Correlations: step-by step
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-0.2 -0.4 -0.6 -0.8 -1.0

0.2 0.4 0.6 0.8 1.0

We can use this logic to calculate the correlation by 
multiplying the position of a person relative to the 
mean in the first variable and the position relative to 
the mean in the second variable. The product of 
this multiplication is then “standardized” by (i.e., 
divided) the standard deviations for the first (σX) 
and the second variable (σY) which are multiplied. 
The whole formula looks like this:

The part above the fraction bar is called covariance 
(as the name indicates, it expresses common 
variation in the two variables). It is calculated with 
this formula:

Cov (X ,Y )= 1
N−1

⋅∑
i=1

N

(X i−X̄ )⋅(Y i−Ȳ )

rXY=
Cov (X ,Y )

σ̂X⋅σ̂Y
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-0.2 -0.4 -0.6 -0.8 -1.0

0.2 0.4 0.6 0.8 1.0

                                     (same formula as on the
                                   previous slide)

If a person has a value above the mean in both 
variables the product of (Xi - X) · (Yi - Y) is positive, 
the same happens if a person has a value below 
the mean in both variables (if we multiply two 
negative numbers, the product is positive). If not, 
i.e., if a person has a value above the mean in one 
and below the mean in the other variable, the 
product is negative. These products are summed 
up per individuum.

If all (or the majority of) products are positive and 
point in the same direction we will get a large 
positive correlation (top row in the figure). If all (or 
the majority of) products are negative and point in 
opposite directions we will get a large negative 
correlation (bottom row in the figure). If some 
products are positive and some are negative, the 
correlation will be relatively weak (left in the figure).

Cov (X ,Y )= 1
N−1

⋅∑
i=1

N

(X i−X̄ )⋅(Y i−Ȳ )
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-0.2 -0.4 -0.6 -0.8 -1.0

0.2 0.4 0.6 0.8 1.0

                    (same formula as two slides before)

As I mentioned is the covariance – Cov(X, Y) 
expressing to what degree a group of participants 
had the same tendency in their values on two 
variables). It is divided by product of the standard 
deviation within the first (σX) and the second 
variable (σY). This product represents the “natural” 
variation within each of the variables.

By doing so, i.e. by dividing the covariance and the 
product of the standard deviations, the correlation 
always falls in the range of -1 to 1.

r XY=
Cov (X ,Y )

σ̂X⋅σ̂Y



  

 

Correlations in jamovi
●  → ☰ Open → Data Library → learning statistics with jamovi

(lsj-data) → Parenthood

● change measurement
type for dan.grump to
“Continuous” (and ID to
ID)

● Regression → Correlation Matrix
assign all variables except “ID” to the variable box
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The dataset that we will use now to demonstrate 
correlations is called Parenthood and can be 
opened using      → Open → “Data Library” → 
“learning statistics with jamovi” (lsj-data).

The dataset contains five columns of which we will 
use four dan.sleep, baby.sleep, dan.grump, and 
day. Dan is parent to a baby and registered for 
every day (day), how long the baby slept 
(baby.sleep), how long Dan slept (dan.sleep) and 
how grumpy Dan was on that day (dan.grump). We 
are now interested in how these variables are 
related. Is it, e.g., reasonable to assume that the 
older the baby gets, the more Dan is going to get 
sleep? Or is it reasonable to assume that Dan’s 
grumpiness increases as the sleeps Dan gets 
decreases?



  

 

Correlations in jamovi
●  → ☰ Open → Data Library → learning statistics with jamovi

(lsj-data) → Parenthood

● change measurement
type for dan.grump to
“Continuous” (and ID to
ID)

● Regression → Correlation Matrix
assign all variables except “ID” to the variable box
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When we look at the variables, than we see that 
jamovi has assigned the measurement level 
“Ordinal” to dan.grump that we should change into 
“Continuous”. To do this, we click on dan.grump in 
the top row with the variable names in the 
spreadsheet and then change the “Measurement 
type”. If we don’t do that, the calculations are still 
correct. However, the variables are re-arranged 
(with the originally ordinal one dan.grump as the 
last row / column) which may lead to confusion 
when comparing your outputs with the ones on the 
slides.

In order to explore these relations using jamovi, we 
use the icon “Regression” → “Correlation Matrix”. 
We assign dan.sleep, baby.sleep, dan.grump, and 
day to the box for the variables.



  

 

Correlations in jamovi
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Contrary to the expectation, none of the correlations 
with age of the baby (day) is significant (grey box).

If we look at the three other combinations (green 
box), than we see that all of them are highly 
significant. The correlation between how much 
sleep Dan got and Dan’s grumpiness is the one 
with the highest absolute value for the correlation 
coefficient (r = -0.903, p < 0.001), i.e. the strongest 
negative correlation (very close to 1 and hence 
almost perfect). The second highest correlation is 
the one between how much the baby and Dan slept 
(r = 0.628, p < 0.001). In this case we got a positive 
correlation coefficient, indicating that the more the 
baby slept, the more slept Dan. Be careful, even 
though it seems quite logical (based on our 
everyday knowledge) that how much the baby slept 
caused how much Dan slept, but strictly speaking 
we can’t make such claims based upon a 
correlation.
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Finally, we have the negative correlation between 
how much the baby slept and Dan’s grumpiness (r 
= -0.566, p < 0.001). Given that size and direction 
of this correlation is about that of the product of the 
two others (r = -0.903 · 0.628 = -0.567 ~ -0.566) we 
might be very tempted to speculate that the 
direction of effect goes: babies sleep → Dan’s 
sleep → Dan’s grumpiness. However, again the 
warning that correlations don’t allow to assess (and 
even less to claim) certain causal relations.



  

 

Non-parametric correl. in jamovi
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In addition to Pearson’s r, jamovi allows us also to 
calculate two non-parametric correlations: 
Spearman does something very similar to 
Pearson’s correlation coefficient. However, 
whereas the parametric correlation coefficient 
(Pearson’s) uses the distance of individuals from 
the mean of each variable in the correlation, the 
non-parametric correlation (Spearman) compares 
the ranks each person has within the two variables.
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This is done by sorting each of the two variables and 
then assigning a rank depending on which position 
in the list that individual achieved. Afterwards, the 
same formula as for the Pearson correlation 
coefficient above is applied (only this time not 
calculating the statistics for the variable values but 
for the ranks these values represent).

If all individuals have the same (or a very similar) 
rank on both variables, the correlation coefficient is 
positive.

If they ranks are opposite (i.e., being among the first 
on one variable and rather at the back on the 
other), the correlation is negative.

If the rank in one variable doesn’t really bear any 
predictive power for saying something about the 
rank in the other variable, the correlation is low 
(close to zero).
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When taking the parenthood dataset, we observe the 
interesting fact that the Spearman’s rho correlation 
coefficients have a very similar magnitude to the 
parametric Pearson’s coefficients. Sometimes the 
Spearman coefficients are even numerically larger: 
dan.sleep – baby.sleep and dan.grump – 
baby.sleep. However, in most cases, non-
parametric measures tend to lower coefficients and 
lower p-values.
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Finally, we have a measure called Kendall’s tau b that 
also operates on ranks but compares how many 
individuals got the same rank on both variables and 
for how many the rank was different. Using 
Kendall’s tau b, we typically get much lower 
correlation coefficients (even though all correlations 
are still statistically highly significant; p < 0.001 for 
all).



  

 

Where corr. fail: Anscombe’s quartet
● open the file using  → Open → Data library (→ ☰

learning statistics with jamovi) → Anscombe
● select “Exploration” → “Descriptives”

assign all variables (X1 to X4, Y1 to Y4) to “Variables”
tick “Shapiro-Wilk”
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For another word of caution regarding correlations 
and for demonstrating what effect outliers in your 
data can cause, we have to turn to a famous 
dataset called Anscombe’s quartett.

You can open the file using  → Open → Data ☰
library (→ learning statistics with jamovi) → 
Anscombe.



  

 

Where corr. fail: Anscombe’s quartet
● Anscombe's quartet are four variable pairs (X1–Y1, ... 

X4–Y4) with nearly identical descriptive statistics (incl. 
correlation coeff.), yet very different distributions
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First, let’s have a look at the Descriptive statistics. 
Use the icon “Exploration” → Descriptives and 
assign X1 to X4, and Y1 to Y4 to “Variables”. Then 
open the Drop-down-menu “Statistics”, select “Std. 
deviation” (under “Dispersion”) and “Shapiro-Wilk” 
(under Normality).

You will see a table as the one shown above. As you 
can see, the Mean is the same within all X-
variables (9.000) and within all Y-variables (7.501). 
The same applies for the Standard deviation which 
is also identical within X- (3.317) and Y-variables 
(2.032). Whitin the X variables, most (¾) also are in 
accordance with a normal distribution.



  

 

Where corr. fail: Anscombe’s quartet
● Regression → Correlation Matrix

assign “X1” and “Y1” the the variable box (remember, the 
variable come in pairs, so X1 → Y1, X2 → Y2, etc.)
tick “Correlation matrix” (under “Plot”)

● right-click on the analysis in the output window (e.g., the table 
with the correlations), select Analysis → Duplicate, repeat this 
three times (you need four analyses altogether)

● go to the second and replace X1 and Y1 with X2 and Y2, and 
repeat this for the third (X3, Y3) and fourth (X4, Y4)
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Select “Regression” → “Correlation Matrix” and start 
with assigning the first pair (X1, Y1) to the variable 
box.

Ensure that X1 comes first in the variable list (before 
Y1; this doesn’t make a difference for the 
correlation coefficient but for how the plots look 
like).

You obtain a correlation coefficient of r = 0.816 which 
is significant p = 0.002. Now, switch on “Correlation 
matrix” (under “Plots”).

Right-click somewhere in that output, select 
“Analysis” → “Duplicate” and repeat that another 
two times (so that you have four copies altogether).

Now, you click onto the second analysis and replace 
X1, Y1 with X2, Y2. For the third analysis you 
replace X1, Y1 with X3, Y3 and for the fourth X1, 
Y1 with X4, Y4.
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Y1 Y2 Y3

X1 X2 X3

Y4

X4

Correlation Matrix

    X1 Y1

X1 Pearson's r —  

  p-value —  

Y1 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X2 Y2

X2 Pearson's r —  

  p-value —  

Y2 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X3 Y3

X3 Pearson's r —  

  p-value —  

Y3 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X4 Y4

X4 Pearson's r —  

  p-value —  

Y4 Pearson's r 0.817 —

  p-value 0.0022 —

 

Now, let’s have a look at all of them in comparison: 
Most importantly, we see that all correlation 
coefficients and p-values are identical (r = 0.816, p 
= 0.002). What we also see is that the plot’s differ 
quite a bit.

For the X1 – Y1 combination, the dots are relatively 
close to the regression line and how much they are 
away from the regression line seems random. This 
is pretty much what we typically would expect for 
data points following a normal distribution.

The X2 – Y2 combination has a curvilinear relation-
ship. Since the mathematics underlying our 
statistics are (in principle) only suited to describe 
linear relationships, such a curvilinear relationship 
falls a bit outside the scope of these methods. 
There are methods to describe curvilinear relation-
ships, but those are quite advanced and not 
introduced in the course.
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Y1 Y2 Y3

X1 X2 X3

Y4

X4

Correlation Matrix

    X1 Y1

X1 Pearson's r —  

  p-value —  

Y1 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X2 Y2

X2 Pearson's r —  

  p-value —  

Y2 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X3 Y3

X3 Pearson's r —  

  p-value —  

Y3 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X4 Y4

X4 Pearson's r —  

  p-value —  

Y4 Pearson's r 0.817 —

  p-value 0.0022 —

 

For the X3 – Y3 relationship we see a line of dots that 
is much steeper than the regression line plus a 
single dot at the very right end that is much 
underneath the regression line. This example 
perfectly illustrates the effect an outlier can have. 
All our statistical procedures are based upon 
minimizing the squared deviation of all points 
included in the calculation of our correlation.

You can now try something: Change to the “Data”-tab 
so that you have access to the spreadsheet, move 
the cursor to line 3 in the column Y3 and remove 
the value. See what happens to the scatterplot and 
the correlation – we now have a perfect (positive) 
correlation. Just from removing one outlier. Hit Ctrl-
Z to revert that. We could have been made aware 
of that outlier by running “Descriptives” and 
checking for Normality using the Shapiro-Wilk-test 
(which is significant for Y3, indicating that this 
variable deviates from a normal distribution).
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Y1 Y2 Y3

X1 X2 X3

Y4

X4

Correlation Matrix

    X1 Y1

X1 Pearson's r —  

  p-value —  

Y1 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X2 Y2

X2 Pearson's r —  

  p-value —  

Y2 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X3 Y3

X3 Pearson's r —  

  p-value —  

Y3 Pearson's r 0.816 —

  p-value 0.0022 —

 

Correlation Matrix

    X4 Y4

X4 Pearson's r —  

  p-value —  

Y4 Pearson's r 0.817 —

  p-value 0.0022 —

 

The combination of X4 – Y4 is even more extreme. 
All values in X4 except from one outlier (case 19) 
have the same value: 8. In the plot the outlier is a 
bit difficult to spot (it is lying on the regression line).

There is also something interesting happening when 
you remove that outlier. Go to “X4” and remove the 
19 in line 8. Suddenly, the correlation got a “NaN” 
(meaning NaN) because now all values in X4 are 8 
and we do not have any variation in that variable 
anymore. We can therefore not calculate a 
correlation: If all variables have the same value, the 
difference from the mean that we use to calculate 
our correlation gets 0 (since all variables are now 
equal to the mean). Hit Ctrl-Z do revert that 
removal. The Shapiro-Wilk-test in Descriptives, 
assessing normality, should already have worked 
as a warning: the variable X4 got a highly 
significant p-value, indicating a clear deviation from 
a normal distribution.



  

 

Summary
Categorical predictor and outcome variables (Ch. 10)

● χ²-test of association: step-by-step and in jamovi
● χ² goodness-of-fit in jamovi
● McNemar test for Paired Samples in jamovi

Categorical predictor and continuous outcome variables (Ch. 11)
● z-test and One Sample t-test: step-by-step and in jamovi
● Independent Samples t-test
● Paired Samples t-test
● Assumptions and non-parametric alternatives

Continuous predictor and continuous outcome variables (Ch. 12)
● Correlations: step-by step and in jamovi
● Where correlations fail: Anscombe’s quartet
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Let’s briefly recapture what we learned in this lecture: 
We introduced three classes of analyses for different 
types of data: (1) categorical predictors and 
categorical outcomes, based upon the χ²-distribution 
(and did even some calculations by hand). (2) We 
introduced different types of t-tests that we can use 
to assess the influence of a categorical predictor on 
a continuous outcome variable. (3) Finally, we 
looked at correlations used to explore relations 
between continuous variables.

There is hopefully another thing you were made aware 
of, e.g., by the example with Anscombe’s quartet. 
Statistical measures are one side of thing. Applying 
them sensibly and responsibly another. Typically, 
this is not achieved by just follwing “receipes” in a 
cookbook. You should rather aim to understand what 
you data “mean" and how you can interpret them. 
Don’t be afraid to try things out and see what 
happens. Only that way, you learn and get better.



  

 

Finally, you are done!
Thank you for 
bearing with me!
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