Readings: Difference between revisions

From info216
 
(65 intermediate revisions by the same user not shown)
Line 1: Line 1:
''This page currently shows some of the lectures and readings from the Spring of 2023. It will be updated with materials for 2024 as the course progresses.''
=Textbooks=
=Textbooks=


Line 4: Line 6:
* Dean Allemang, James Hendler & Fabien Gandon (2020). '''Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition).''' ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.  
* Dean Allemang, James Hendler & Fabien Gandon (2020). '''Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition).''' ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.  


Supplementary text book (''not'' mandatory):
Supplementary reading book (''not'' mandatory):
* Andreas Blumauer and Helmut Nagy (2020). '''The Knowledge Graph Cookbook - Recipes that Work.''' mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.
* Andreas Blumauer and Helmut Nagy (2020). '''The Knowledge Graph Cookbook - Recipes that Work.''' mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.


Line 17: Line 19:
''Note:'' to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.
''Note:'' to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.


=Lectures=
=Lectures (in progress)=


Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.
Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.
Line 35: Line 37:
* Important knowledge graphs (''which we will look more at later''):
* Important knowledge graphs (''which we will look more at later''):
** Wikidata (https://www.wikidata.org/)
** Wikidata (https://www.wikidata.org/)
<!-- ** DBpedia (https://www.dbpedia.org, https://dbpedia.org/page/Bergen) -->
<!-- ** DBpedia (https://www.dbpedia.org, https://dbpedia.org/page/Bergen)
** GeoNames (https://www.geonames.org/)
** GeoNames (https://www.geonames.org/)
<!-- ** BabelNet (https://babelnet.org/)
** BabelNet (https://babelnet.org/)
** Linking Open Data (LOD) (http://lod-cloud.net)
** Linking Open Data (LOD) (http://lod-cloud.net)
** Linked Open Vocabularies (LOV, https://lov.linkeddata.es/dataset/lov/)
** Linked Open Vocabularies (LOV, https://lov.linkeddata.es/dataset/lov/)
Line 51: Line 53:
Mandatory readings:
Mandatory readings:
* Chapter 3 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 3 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/TR/rdf11-primer/ W3C's RDF 1.1 Primer]
* [https://www.w3.org/TR/rdf11-primer/ W3C's RDF 1.1 Primer] until and including 5.1.2 Turtle (but not the rest for now)
* [http://rdflib.readthedocs.io/ RDFlib 6.2.0 documentation]:
* [http://rdflib.readthedocs.io/ RDFlib 7.0.0 documentation], the following pages:
** Main page
** The main page
** Getting started with RDFLib
** Getting started with RDFLib
** Loading and saving RDF
** Loading and saving RDF
Line 61: Line 63:
** RDF terms in rdflib
** RDF terms in rdflib
** Namespaces and Bindings
** Namespaces and Bindings
* [[:File:S02-RDF.pdf | Slides from last year's lecture]]
* [[:File:S02-RDF.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [https://rdflib.readthedocs.io/en/stable/apidocs/modules.html RDFLib 7.0.0 packages] (reference for the labs)
* [https://www.ldf.fi/service/rdf-grapher RDF Grapher] for drawing RDF graphs
* [https://www.ldf.fi/service/rdf-grapher RDF Grapher] for drawing RDF graphs
* [https://rdflib.readthedocs.io/en/stable/apidocs/modules.html RDFLib 6.2.0 packages] (reference for the labs)
* [https://issemantic.net/rdf-visualizer RDF Visualizer] for drawing RDF graphs
* [https://www.w3.org/TR/rdf11-concepts/ W3C's RDF 1.1 Concepts and Abstract Syntax]
* [https://www.w3.org/TR/rdf11-concepts/ W3C's RDF 1.1 Concepts and Abstract Syntax]
* An overview page of some other [https://www.w3.org/2018/09/rdf-data-viz/ RDF Data Visualization tools]
<!-- * An overview page of some other [https://www.w3.org/2018/09/rdf-data-viz/ RDF Data Visualization tools] -->
* Pages 25-28, 92-100, 125-128, and 164-167 in Blumauer & Nagy (suggested)
* Pages 25-28, 92-100, 125-128, and 164-167 in Blumauer & Nagy (suggested)


Line 79: Line 82:
Mandatory readings (tentative):
Mandatory readings (tentative):
* Chapter 6 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 6 in Allemang, Hendler & Gandon (3rd edition)
* [https://medium.com/wallscope/constructing-sparql-queries-ca63b8b9ac02 Constructing SPARQL Queries]
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (Sections 1-3)
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (Sections 1-3)
* [https://rdflib.readthedocs.io/ rdflib 6.1.1] materials:
* [https://rdflib.readthedocs.io/ rdflib 7.0.0] materials:
** Querying with SPARQL
** [https://rdflib.readthedocs.io/en/stable/intro_to_sparql.html Querying with SPARQL]
* [[:File:S03-SPARQL.pdf | Slides from last year's lecture]]
* [[:File:S03-SPARQL.pdf | Slides from the lecture]]


Useful materials:
Useful materials:
* [[:File:sparql-1_1-cheat-sheet.pdf | SPARQL 1.1 Cheat Sheet]]
<!-- * [https://medium.com/wallscope/constructing-sparql-queries-ca63b8b9ac02 Constructing SPARQL Queries] -->
* [http://www.w3.org/TR/sparql11-query/ SPARQL 1.1 Query Language]
* [http://www.w3.org/TR/sparql11-query/ SPARQL 1.1 Query Language]
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (the rest of it)
* [http://www.w3.org/TR/sparql11-update/ SPARQL 1.1 Update Language] (the rest of it)
* [[:File:sparql-1_1-cheat-sheet.pdf | SPARQL 1.1 Cheat Sheet]]
* [https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions SPARQL Expressions and Functions]
* For example pages 54-55, 133 in Blumauer & Nagy (suggested)
* For example pages 54-55, 133 in Blumauer & Nagy (suggested)
* The [[:File:kg4news-dump-20230130.txt | Knowledge Graphs for the News]] example used in the lecture. (Remember to save with the correct ''.ttl'' extension.)


==Lecture 4: Open Knowledge Graphs I==
==Lecture 4: Linked Open Data (LOD)==


Themes:
Themes:
* Linked Open Data(LOD)
* The LOD cloud
* The LOD cloud
* Data provisioning
Mandatory readings ''(both lecture 4 and 5)'':
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/DesignIssues/LinkedData.html Linked Data], Tim Berners-Lee, 2006-07-27.
* [[:File:S04-LOD.pdf | Slides from the lecture]]
Useful materials
* [https://www.ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/ What Are Linked Data and Linked Open Data?]
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]
==Lecture 5: Open Knowledge Graphs I==
Themes:
* Important open KGs (LOD datasets)
* Important open KGs (LOD datasets)
** Wikidata
** Wikidata
** DBpedia
** DBpedia
** GeoNames
** the GDELT project
** WordNet
** BabelNet
** and perhaps others


Mandatory readings (preliminary):
Mandatory readings:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* [https://www.w3.org/DesignIssues/LinkedData.html Linked Data], Tim Berners-Lee, 2006-07-27.
* [http://lod-cloud.net The Linking Open Data (LOD) cloud diagram] - The Linked Open Data Cloud
* Important knowledge graphs - and what to read:
* Important knowledge graphs - and what to read:
** Wikidata (https://www.wikidata.org/):
** Wikidata (https://www.wikidata.org/):
Line 116: Line 129:
*** [http://wiki.dbpedia.org/about About Dbpedia]
*** [http://wiki.dbpedia.org/about About Dbpedia]
*** example: [https://dbpedia.org/resource/Bergen]
*** example: [https://dbpedia.org/resource/Bergen]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]
=Lecture 6: Open Knowledge Graphs II=
Themes:
* Important open KGs (LOD datasets)
** DBpedia ''(continued)''
** GeoNames
** the GDELT project
** WordNet
** BabelNet
** ConceptNet
Mandatory readings:
* Chapter 5 in Allemang, Hendler & Gandon (3rd edition)
* Important knowledge graphs - and what to read:
** GeoNames (https://www.geonames.org/):
** GeoNames (https://www.geonames.org/):
*** [http://www.geonames.org/about.html About GeoNames]
*** [http://www.geonames.org/about.html About GeoNames]
Line 127: Line 156:
*** [https://babelnet.org/how-to-use How to use]
*** [https://babelnet.org/how-to-use How to use]
*** example: [https://babelnet.org/synset?id=bn%3A00010008n&orig=Bergen&lang=EN]
*** example: [https://babelnet.org/synset?id=bn%3A00010008n&orig=Bergen&lang=EN]
*  [[:File:S05-OpenKGs.pdf | Slides from last year's lecture]]
** ConceptNet (http://conceptnet.io)
*** [http://conceptnet.io ConceptNet - An open, multilingual knowledge graph]
*  [[:File:S05-S06-OpenKGs.pdf | Slides from the lecture]]


Useful materials
Useful materials
* [[:File:BizerHeathBernersLee-LinkedData2009-TheStorySoFar.pdf | Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, 205-227.]]
* Wikidata statistics
* Wikidata statistics
** [https://grafana.wikimedia.org/d/000000167/wikidata-datamodel?orgId=1&refresh=30m Entity statistics]
** [https://grafana.wikimedia.org/d/000000167/wikidata-datamodel?orgId=1&refresh=30m Entity statistics]
Line 141: Line 171:
* Parts 1 and 3 in Blumauer & Nagy's text book (not tightly related to the lecture, but time to finish them by now :-))
* Parts 1 and 3 in Blumauer & Nagy's text book (not tightly related to the lecture, but time to finish them by now :-))


==Lecture 5: Open Knowledge Graphs II==
==Lecture 7: Enterprise Knowledge Graphs==
''See readings for lecture 4.''
 
==Lecture 6: Enterprise Knowledge Graphs==


Themes:  
Themes:  
* Enterprise Knowledge Graphs
* Enterprise Knowledge Graphs (EKGs)
* Google’s Knowledge Graph
* Google’s Knowledge Graph
* Amazon’s Product Graphs
* Amazon’s Product Graph
* News Hunter’s infrastructure and architecture
* JSON-LD (video presentation)


Mandatory readings (preliminary):
Mandatory readings:
* [https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ Introducing the Knowledge Graph: Things not Strings], Amit Singhal, Google (2012). ''(The blog post that introduced Google's knowledge graph to the world.)''
* [https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ Introducing the Knowledge Graph: Things not Strings], Amit Singhal, Google (2012). ''(The blog post that introduced Google's knowledge graph to the world.)''
* [https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/ A reintroduction to our Knowledge Graph and knowledge panels], Danny Sullivan, Google (2020).
* [https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/ A reintroduction to our Knowledge Graph and knowledge panels], Danny Sullivan, Google (2020).
* [https://www.aboutamazon.com/news/innovation-at-amazon/making-search-easier How Amazon’s Product Graph is helping customers find products more easily], Arun Krishnan, Amazon (2018). ''(Short blog post that reviews some central ideas from the AutoKnow research paper listed below.)''
* [https://www.aboutamazon.com/news/innovation-at-amazon/making-search-easier How Amazon’s Product Graph is helping customers find products more easily], Arun Krishnan, Amazon (2018). ''(Short blog post that reviews some central ideas from the AutoKnow research paper listed below.)''
* [[:File:S06-EnterpriseKGs.pdf | Slides from last year's lecture]]  
* [https://www.amazon.science/blog/building-product-graphs-automatically Building product graphs automatically], Xin Luna Dong, Amazon (2020).
* [https://json-ld.org/ JSON for Linking Data]
* [[:File:S07-EnterpriseKGs.pdf | Slides from the lecture]]


Supplementary readings (preliminary):
Supplementary readings:
* [[:File:A1-Poster-NIKT2021.pdf | News Angler / News Hunter poster]]
* [[:File:2006.13473.pdf | AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types]]. Example of research paper from Amazon - this is a bit heavy for Bachelor level, but you can have a look :-)
* Parts 2 and 4 in Blumauer & Nagy's text book (''strongly suggested - this is where Blumauer & Nagy's book is good!'')
* Parts 2 and 4 in Blumauer & Nagy's text book (''strongly suggested - this is where Blumauer & Nagy's book is good!'')
* [[:File:Bosch-LIS.pdf | LIS: A knowledge graph-based line information system]] by Grangel-González, I., Rickart, M., Rudolph, O., & Shah, F. (2023, May). In Proceedings of the European Semantic Web Conference (pp. 591-608). Cham: Springer Nature Switzerland.
* [[:File:2006.13473.pdf | AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types]] by Dong, X. L., He, X., Kan, A., Li, X., Liang, Y., Ma, J., ... & Han, J. (2020, August). In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2724-2734). ''Research paper from Amazon about AutoKnow - this is a bit heavy for Bachelor level, but you can have a look :-)''


==Lecture 7: Rules (RDFS and SHACL)==
==Lecture 8: Rules (SHACL and RDFS)==


Themes:
Themes:
* RDFS
* SHACL and RDFS
* Axioms, rules and entailment
* Axioms, rules and entailment
* Programming RDFS in Python
* Programming SHACL and RDFS in Python


Mandatory readings (preliminary):
Mandatory readings:
* Chapters 7-8 in Allemang, Hendler & Gandon (3rd edition)
* Chapters 7-8 in Allemang, Hendler & Gandon (3rd edition)
* [https://book.validatingrdf.com/bookHtml011.html Chapter 5 ''SHACL''] in [https://book.validatingrdf.com/index.html Validating RDF] (available online)
** Sections 5.1, 5.3-5.5, and 5.6,1-5.6.3
* [http://www.w3.org/TR/rdf-schema/ W3C's RDF Schema 1.1], focus on sections 1-3 and 6
* [http://www.w3.org/TR/rdf-schema/ W3C's RDF Schema 1.1], focus on sections 1-3 and 6
* Material on SHACL ''(TBD)''
* [[:File:S07-SHACL-RDFS.pdf | Slides from the lecture]]  
* [[:File:S07-RDFS.pdf | Slides from last year's lecture]]  


Useful materials (preliminary):
Useful materials:
* Interactive, online [https://shacl.org/playground/ SHACL Playground]
* [https://docs.google.com/presentation/d/1weO9SzssxgYp3g_44X1LZsVtL0i6FurQ3KbIKZ8iriQ/ Lab presentation containing a short overview of SHACL and pySHACL]
* [https://pypi.org/project/pyshacl/ pySHACL - A Python validator for SHACL at PyPi.org] ''(after installation, go straight to "Python Module Use".)''
* [https://w3c.github.io/data-shapes/shacl/ Shapes Constraint Language (SHACL) (Editor's Draft)]
* [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (''the axioms and entailments in sections 8 and 9, are most important, and we will review them in the lecture'')
* [https://www.w3.org/TR/rdf11-mt/ W3C's RDF 1.1 Semantics] (''the axioms and entailments in sections 8 and 9, are most important, and we will review them in the lecture'')
* [https://github.com/blazegraph/database/wiki/InferenceAndTruthMaintenance Inference and Thruth Maintenance in Blazegraph]
* [https://github.com/blazegraph/database/wiki/InferenceAndTruthMaintenance Inference and Thruth Maintenance in Blazegraph]
* [https://github.com/RDFLib/OWL-RL OWL-RL] adds inference capability on top of RDFLib. To use it, copy the ''owlrl'' folder into your project folder, next to your Python files, and import it with ''import owlrl''.
* [https://github.com/RDFLib/OWL-RL OWL-RL] adds inference capability on top of RDFLib. To use it, copy the ''owlrl'' folder into your project folder, next to your Python files, and import it with ''import owlrl''.
* [https://owl-rl.readthedocs.io/en/latest/owlrl.html OWL-RL documentation] (most likely more detailed than you will need - check the [[Python Examples]] first
* [https://owl-rl.readthedocs.io/en/latest/owlrl.html OWL-RL documentation] (most likely more detailed than you will need - check the [[Python Examples]] first
* [https://w3c.github.io/data-shapes/shacl/ Shapes Constraint Language (SHACL) (Editor's Draft)]
* [https://pypi.org/project/pyshacl/ pySHACL - A Python validator for SHACL]
* Pages 101-106 in Blumauer & Nagy (suggested)
* Pages 101-106 in Blumauer & Nagy (suggested)


==Lecture 8: Ontologies (OWL)==
==Old lectures (2003) - will be updated==
 
==Lecture 9: Ontologies (OWL)==


Themes:
Themes:
Line 192: Line 226:
* Programming basic OWL in Python
* Programming basic OWL in Python


Mandatory readings (preliminary):
Mandatory readings:
* Chapter 9-10 in Allemang, Hendler & Gandon (3rd edition)
* Chapter 9-10 in Allemang, Hendler & Gandon (3rd edition)
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
* [http://vowl.visualdataweb.org/ VOWL: Visual Notation for OWL Ontologies]
* [https://protegeproject.github.io/protege/getting-started/ Protégé-OWL Getting Started]
* [https://protegeproject.github.io/protege/getting-started/ Protégé-OWL Getting Started]
* [[:File:S08-OWL.pdf | Slides from last year's lecture]]
* [[:File:S08-OWL.pdf | Slides from the lecture]]


Useful materials (cursory) (preliminary):
Useful materials (cursory):
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview]
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview]
* [https://www.w3.org/TR/owl2-quick-reference/ OWL 2 Quick Reference Guide]
* [https://www.w3.org/TR/owl2-quick-reference/ OWL 2 Quick Reference Guide]
* [https://www.w3.org/TR/owl2-rdf-based-semantics/ OWL2 RDF-Based Semantics]
* [https://www.w3.org/TR/owl2-rdf-based-semantics/ OWL2 RDF-Based Semantics]
* The OWL-RL materials from Lecture 5
* The OWL-RL materials (from Lecture 5)
* [http://vowl.visualdataweb.org/v2 VOWL: Visual Notation for OWL Ontologies]
* [http://vowl.visualdataweb.org/webvowl/index.html#sioc WebVOWL]
* [[:File:LohmannEtAl2016-VisualizingOntologiesWithVOWL.pdf | Lohmann et al. (2019): Visualizing Ontologies with VOWL. ''Semantic Web Journal.'']]
* [[:File:LohmannEtAl2016-VisualizingOntologiesWithVOWL.pdf | Lohmann et al. (2019): Visualizing Ontologies with VOWL. ''Semantic Web Journal.'']]
* Pages 106-109 in Blumauer & Nagy (suggested)
* Pages 106-109 in Blumauer & Nagy (suggested)


==Lecture 9: Vocabularies==
==Lecture 10: Vocabularies==


Themes:
Themes:
* LOD vocabularies and ontologies
* LOD vocabularies and ontologies


Mandatory readings (preliminary):
Mandatory readings:
* Chapters 10-11 in Allemang, Hendler & Gandon (3rd edition)
* Chapters 10-11 in Allemang, Hendler & Gandon (3rd edition)
* [http://lov.okfn.org/dataset/lov/ Linked Open Vocabularies (LOV)]
* [http://lov.okfn.org/dataset/lov/ Linked Open Vocabularies (LOV)]
* Important vocabularies / ontologies:
* Important vocabularies / ontologies:
** [http://xmlns.com/foaf/spec/ Friend of a Friend (FOAF)] (if necessary follow the link to the 2004 version)
** [http://motools.sourceforge.net/event/event.html Event Ontology (event)]
** [http://www.w3.org/TR/owl-time/ Time ontology in OWL (time, OWL-time)]
** [https://www.w3.org/2003/01/geo/ geo: World Geodetic Standard (WGS) 84]
** [http://dublincore.org/ Dublin Core (DC)]
** [http://www.w3.org/2004/02/skos/ SKOS - Simple Knowledge Organization System Home Page]
** [http://www.w3.org/2004/02/skos/ SKOS - Simple Knowledge Organization System Home Page]
** [http://dublincore.org/ Dublin Core (DC)]
** [http://rdfs.org/sioc/spec/ Semantic Interlinked Online Communities (SIOC)]
** [http://xmlns.com/foaf/spec/ Friend of a Friend (FOAF)]
** [http://schema.org/docs/full.html schema.org - Full Hierarchy]
** [http://schema.org/docs/full.html schema.org - Full Hierarchy]
** [http://wikidata.dbpedia.org/services-resources/ontology DBpedia Ontology]
** [http://wikidata.dbpedia.org/services-resources/ontology DBpedia Ontology]
** [http://www.w3.org/ns/prov# Provenance Interchange (PROV)]
** [http://creativecommons.org/ns Creative Commons (CC) Vocabulary]
** [http://creativecommons.org/ns Creative Commons (CC) Vocabulary]
** [http://www.w3.org/ns/prov# Provenance Interchange (PROV)]
** [http://motools.sourceforge.net/event/event.html Event Ontology (event)]
** [http://www.w3.org/TR/owl-time/ Time ontology in OWL (time, OWL-time)]
** [http://rdfs.org/sioc/spec/ Semantic Interlinked Online Communities (SIOC)]
** ''What we expect you to know about each vocabulary is this:''  
** ''What we expect you to know about each vocabulary is this:''  
*** Its purpose and where and how it can be used.
*** Its purpose and where and how it can be used.
*** Its most central 3-6 classes and properties be able to explain its basic structure.  
*** Its most central 3-6 classes and properties be able to explain its basic structure.  
*** It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart.  
*** It is less important to get all the names and prefixes 100% right: we do not expect you to learn every little detail by heart.  
* [[:File:S09-Vocabularies.pdf | Slides from last year's lecture]]
* [[:File:S09-Vocabularies.pdf | Slides from the lecture]]
* [[:File:S09-NewsAnglerOntologies.pdf | Additional slides about the News Angler/News Hunter ontologies (same slides as  2021)]]


Useful materials (preliminary):
==Lecture 11: Formal ontologies (description logic, OWL-DL)==
* More vocabularies / ontologies:
** [https://www.w3.org/2003/01/geo/ geo: World Geodetic Standard (WGS) 84]
** [http://purl.org/vocab/vann/ Annotating vocabulary descriptions (VANN)]
** [https://www.w3.org/2003/06/sw-vocab-status/note Vocabulary Status (VS)]
** [http://motools.sourceforge.net/timeline/timeline.html Timeline Ontology (tl)]
** [http://vocab.org/bio/ Biographical Information (BIO)]
** [http://bibliontology.com/ Bibliographic Ontology (bibo)]
** [http://musicontology.com/ Music Ontology (mo)]
 
==Lecture 10: Reasoning about KGs (DL)==


Themes:
Themes:
* OWL-DL
* Description logic
* Description logic
* Decision problems
* Decision problems
* OWL-DL


Mandatory readings (preliminary):
Mandatory readings:
* [[:File:S10-DescriptionLogic.pdf | Slides from last year's lecture]]
* Chapters 12-13 in Allemang, Hendler & Gandon (3rd edition)
* [http://www.w3.org/TR/owl-primer OWL2 Primer], sections 2-6 (same as Lecture 8) and sections 9-10
* [[:File:S10-OWL-DL.pdf | Slides from the lecture]]


Useful materials (preliminary):
Useful materials:
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview] (same as Lecture 8)
* [https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/ OWL 2 Quick Reference Guide] (same as Lecture 8)
* [[:File:NardiBrachman-IntroductionToDescriptionLogic.pdf | Nardi & Brachman: Introduction to Description Logics. Chapter 1 in Description Logic Handbook.]]
* [[:File:NardiBrachman-IntroductionToDescriptionLogic.pdf | Nardi & Brachman: Introduction to Description Logics. Chapter 1 in Description Logic Handbook.]]
* [[:File:BaderNutt-BasicDescriptionLogics.pdf | Baader & Nutt: Basic Description Logics. Chapter 2 in Description Logic Handbook.]]
* [[:File:BaderNutt-BasicDescriptionLogics.pdf | Baader & Nutt: Basic Description Logics. Chapter 2 in Description Logic Handbook.]]
** ''Cursory'', quickly gets mathematical after the introduction. In particular, sections 2.2.2.3-4 about fixpoint semantics apply to TBoxes with cyclic definitions, which we do not consider in this course. We also do not consider the stuff about rules, epistemics, and reasoning from section 2.2.5 on.
** ''Cursory'', quickly gets mathematical after the introduction. In particular, sections 2.2.2.3-4 about fixpoint semantics apply to TBoxes with cyclic definitions, which we do not consider in this course. We also do not consider the stuff about rules, epistemics, and reasoning from section 2.2.5 on.
* [http://www.cs.man.ac.uk/~ezolin/dl/ Complexity of Reasoning in Description Logics. Powered by Evgeny Zolin.] (informative)
==Lecture 11: Formal ontologies (OWL-DL)==
Themes:
* Advanced OWL
Mandatory readings:
* Chapters 12-13 in Allemang, Hendler & Gandon (3rd edition)
* [http://www.w3.org/TR/owl-primer OWL2 Primer]
* [[:File:S11-OWL-DL.pdf | Slides from last year's lecture]]
Useful materials (preliminary):
* [http://www.w3.org/TR/owl-overview OWL 2 Document Overview]
* [https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/ OWL 2 Quick Reference Guide] (cursory)
* [http://vowl.visualdataweb.org/v2 VOWL: Visual Notation for OWL Ontologies]
* [http://vowl.visualdataweb.org/webvowl/index.html#sioc WebVOWL]
* [[:File:DL-reasoning-RoyalFamily-final.owl.txt | Example file]] demonstrating Protege-OWL reasoning with HermiT.
Owlready2 materials for the lab (preliminary):
* The section [https://pypi.org/project/Owlready2/ What can I do with Owlready2?]
* [https://owlready2.readthedocs.io/en/latest/ Welcome to Owlready2's documentation!]


==Lecture 12: KG embeddings I==
==Lecture 12: KG embeddings==


Themes:
Themes:
Line 291: Line 299:
* [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa Introduction to Word Embeddings and word2vec] ([[:file:IntroToWordEmbeddings.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Introduction to Knowledge Graph Embeddings] ([[:file:IntroToKGEmbeddings.pdf | PDF]])
* [https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Introduction to Knowledge Graph Embeddings] ([[:file:IntroToKGEmbeddings.pdf | PDF]])
* [[:file:S12-GraphEmbeddings.pdf | Slides from last year's lecture]]
* [[:file:S11-GraphEmbeddings.pdf | Slides from the lecture]]


Supplementary readings (preliminary):
Supplementary readings (preliminary):
Line 298: Line 306:
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)
* [https://torchkge.readthedocs.io/en/latest/ Welcome to TorchKGE’ s documentation!] (for the labs)


==Lecture 13: KG embeddings II==
==Lecture 13: Wrapping up==
''See readings for lecture 12.''
 
==Lecture 14: Knowledge engineering / Wrapping up==


Themes:
Themes:
* Knowledge engineering
* Questions about the exam
* The Ontology Development 101 method
* Quizzes


Mandatory readings (preliminary):
Mandatory readings:
* Chapters 14-16 in Allemang, Hendler & Gandon (3rd edition)
* The rest of Allemang, Hendler & Gandon (3rd edition)
* [http://liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%20and%20why%20we%20need%20it.htm Noy & McGuinness (2001): Ontology Development 101: A Guide to Creating Your First Ontology.]
* [[:File:S15-OntologyDevelopment-5.pdf | Slides from an earlier lecture (old slides from 2021)]]


Useful materials (preliminary):
Useful materials:
* The rest of Blumauer & Nagy (suggested)
* The rest of Blumauer & Nagy (suggested)




&nbsp;
&nbsp;
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2023, Andreas L. Opdahl (c)''</div>
<div class="credits" style="text-align: right; direction: ltr; margin-left: 1em;">''INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)''</div>

Latest revision as of 21:54, 20 March 2024

This page currently shows some of the lectures and readings from the Spring of 2023. It will be updated with materials for 2024 as the course progresses.

Textbooks

Main course book (the whole book is mandatory reading):

  • Dean Allemang, James Hendler & Fabien Gandon (2020). Semantic Web for the Working Ontologist, Effective Modeling for Linked Data, RDFS and OWL (Third Edition). ISBN: 9781450376143, PDF ISBN: 9781450376150, Hardcover ISBN: 9781450376174, DOI: 10.1145/3382097.

Supplementary reading book (not mandatory):

  • Andreas Blumauer and Helmut Nagy (2020). The Knowledge Graph Cookbook - Recipes that Work. mono/monochrom. ISBN-10: ‎3902796707, ISBN-13: 978-3902796707.

Other materials

In addition, the materials listed below for each lecture are either mandatory or suggested reading. More materials will be added to each lecture in the coming weeks.

The lectures and lectures notes are also part of the curriculum.

Make sure you download the electronic resources to your own computer in good time before the exam. This is your own responsibility. That way you are safe if a site becomes unavailable or somehow damaged the last few days before the exam.

Note: to download some of the papers, you may need to be inside UiB's network. Either use a computer directly on the UiB network or connect to your UiB account through VPN.

Lectures (in progress)

Below are the mandatory and suggested readings for each lecture. All the textbook chapters in Allemang, Hendler & Gandon are mandatory, whereas the chapters in Blumauer & Nagy are suggested.

Lecture 1: Introduction to KGs

Themes:

  • Introduction to Knowledge Graphs
  • Organisation of the course

Mandatory readings:

Useful materials:

  • Important knowledge graphs (which we will look more at later):
  • Pages 27-55 and 105-122 in Blumauer & Nagy (suggested)

Lecture 2: Representing KGs (RDF)

Themes:

  • Resource Description Framework (RDF)
  • Programming RDF in Python

Mandatory readings:

  • Chapter 3 in Allemang, Hendler & Gandon (3rd edition)
  • W3C's RDF 1.1 Primer until and including 5.1.2 Turtle (but not the rest for now)
  • RDFlib 7.0.0 documentation, the following pages:
    • The main page
    • Getting started with RDFLib
    • Loading and saving RDF
    • Creating RDF triples
    • Navigating Graphs
    • Utilities and convenience functions
    • RDF terms in rdflib
    • Namespaces and Bindings
  • Slides from the lecture

Useful materials:

Lecture 3: Querying and updating KGs (SPARQL)

Themes:

  • SPARQL queries
  • SPARQL Update
  • Programming SPARQL and SPARQL Update in Python

Mandatory readings (tentative):

Useful materials:

Lecture 4: Linked Open Data (LOD)

Themes:

  • Linked Open Data(LOD)
  • The LOD cloud
  • Data provisioning

Mandatory readings (both lecture 4 and 5):

Useful materials

Lecture 5: Open Knowledge Graphs I

Themes:

  • Important open KGs (LOD datasets)
    • Wikidata
    • DBpedia

Mandatory readings:

Lecture 6: Open Knowledge Graphs II

Themes:

  • Important open KGs (LOD datasets)
    • DBpedia (continued)
    • GeoNames
    • the GDELT project
    • WordNet
    • BabelNet
    • ConceptNet

Mandatory readings:

Useful materials

Lecture 7: Enterprise Knowledge Graphs

Themes:

  • Enterprise Knowledge Graphs (EKGs)
  • Google’s Knowledge Graph
  • Amazon’s Product Graph
  • JSON-LD (video presentation)

Mandatory readings:

Supplementary readings:

  • Parts 2 and 4 in Blumauer & Nagy's text book (strongly suggested - this is where Blumauer & Nagy's book is good!)
  • LIS: A knowledge graph-based line information system by Grangel-González, I., Rickart, M., Rudolph, O., & Shah, F. (2023, May). In Proceedings of the European Semantic Web Conference (pp. 591-608). Cham: Springer Nature Switzerland.
  • AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types by Dong, X. L., He, X., Kan, A., Li, X., Liang, Y., Ma, J., ... & Han, J. (2020, August). In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2724-2734). Research paper from Amazon about AutoKnow - this is a bit heavy for Bachelor level, but you can have a look :-)

Lecture 8: Rules (SHACL and RDFS)

Themes:

  • SHACL and RDFS
  • Axioms, rules and entailment
  • Programming SHACL and RDFS in Python

Mandatory readings:

Useful materials:

Old lectures (2003) - will be updated

Lecture 9: Ontologies (OWL)

Themes:

  • Basic OWL concepts
  • Axioms, rules and entailments
  • Programming basic OWL in Python

Mandatory readings:

Useful materials (cursory):

Lecture 10: Vocabularies

Themes:

  • LOD vocabularies and ontologies

Mandatory readings:

Lecture 11: Formal ontologies (description logic, OWL-DL)

Themes:

  • OWL-DL
  • Description logic
  • Decision problems

Mandatory readings:

Useful materials:

Lecture 12: KG embeddings

Themes:

  • KG embeddings
  • Link prediction
  • TorchKGE

Mandatory readings (preliminary):

Supplementary readings (preliminary):

Lecture 13: Wrapping up

Themes:

  • Questions about the exam
  • Quizzes

Mandatory readings:

  • The rest of Allemang, Hendler & Gandon (3rd edition)

Useful materials:

  • The rest of Blumauer & Nagy (suggested)


 

INFO216, UiB, 2017-2024, Andreas L. Opdahl (c)