Nomenclature

From Atomix


Background (total) velocity

Symbol Description Units
[math]\displaystyle{ u }[/math] zonal or longitudinal component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ v }[/math] meridional or transverse component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ w }[/math] vertical component of velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ u_e }[/math] error velocity [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
V velocity perpendicular to mean flow [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ W_d }[/math] Profiler fall speed [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ U_P }[/math] Flow speed past sensor [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
b Along-beam velocity from acoustic Doppler sensor [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ b^{\prime} }[/math] Along-beam velocity from acoustic Doppler sensor with background flow deducted [math]\displaystyle{ \mathrm{m\, s^{-1}} }[/math]
[math]\displaystyle{ \delta{z} }[/math] Vertical size of measurement bin for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
r Along-beam distance from acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \delta{r}_0 }[/math] Along-beam bin size for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \delta{r} }[/math] Along-beam bin separation for acoustic Doppler sensor [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \theta }[/math] Beam transmit and receive angle relative to instrument axis for acoustic Doppler sensor [math]\displaystyle{ ^{\circ} }[/math]

Turbulence properties

Symbol Description Eqn Units
[math]\displaystyle{ \varepsilon }[/math] The rate of dissipation of turbulent kinetic energy per unit mass by viscosity [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ B }[/math] Buoyancy production -- the rate of production of potential energy by turbulence in a stratified flow through the vertical flux of buoyancy. [math]\displaystyle{ B= \frac{g}{\rho} \overline{\rho'w'} }[/math] [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ P }[/math] The production of turbulence kinetic energy. In a steady, spatially uniform and stratified shear flow, turbulence kinetic energy is produced by the product of the Reynolds stress and the shear, for example [math]\displaystyle{ P = -\overline{u'w'}\frac{\partial U}{\partial z} }[/math] . The production is balanced by the rate of dissipation turbulence kinetic energy, [math]\displaystyle{ \varepsilon }[/math], and the production of potential energy by the buoyancy flux, [math]\displaystyle{ B }[/math]. [math]\displaystyle{ P = -\overline{u'w'}\frac{\partial U}{\partial z} = \varepsilon + B }[/math] [math]\displaystyle{ \mathrm{W\, kg^{-1}} }[/math]
[math]\displaystyle{ R_f }[/math] Flux Richardson number; the ratio of the buoyancy flux expended for the net change in potential energy (i.e., mixing) to the shear production of turbulent kinetic energy. [math]\displaystyle{ R_f = \frac{B}{P} }[/math]
[math]\displaystyle{ \Gamma }[/math] "Mixing coefficient"; The ratio of the rate of production of potential energy, [math]\displaystyle{ B }[/math], to the rate of dissipation of kinetic energy, [math]\displaystyle{ \varepsilon }[/math]. [math]\displaystyle{ \Gamma = \frac{B}{\varepsilon} = \frac{R_f}{1-R_f} }[/math]
[math]\displaystyle{ R_i }[/math] (Gradient) Richardson number; the ratio of buoyancy freqency squared to velocity shear squared [math]\displaystyle{ R_i = \frac{N^2}{S^2} }[/math]
[math]\displaystyle{ \kappa_{\rho} }[/math] Turbulent eddy diffusivity via the Osborn (1980) model [math]\displaystyle{ \kappa_{\rho} = \Gamma \varepsilon N^{-2} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1}} }[/math]
[math]\displaystyle{ D_{ll} }[/math] Second-order longitudinal structure function [math]\displaystyle{ D_{ll} = \big\langle[b^{\prime}(r) - b^{\prime}(r+n\delta{r})]^2\big\rangle }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-2}} }[/math]

Fluid properties and background gradients for turbulence calculations

Symbol Description Eqn Units
[math]\displaystyle{ S_P }[/math] Practical salinity [math]\displaystyle{ - }[/math]
[math]\displaystyle{ T }[/math] Temperature [math]\displaystyle{ \mathrm{^{\circ}C } }[/math]
[math]\displaystyle{ P }[/math] Pressure [math]\displaystyle{ \mathrm{dbar} }[/math]
[math]\displaystyle{ \rho }[/math] Density of water [math]\displaystyle{ \rho = \rho\left(T,S_a,P \right) }[/math] [math]\displaystyle{ \mathrm{kg\, m^{-3}} }[/math]
[math]\displaystyle{ \alpha }[/math] Temperature coefficient of expansion [math]\displaystyle{ \alpha = \frac{1}{\rho} \frac{\partial\rho}{\partial T} }[/math] [math]\displaystyle{ \mathrm{K^{-1}} }[/math]
[math]\displaystyle{ \beta }[/math] Saline coefficient of contraction [math]\displaystyle{ \beta = \frac{1}{\rho} \frac{\partial\rho}{\partial S_P} }[/math]
[math]\displaystyle{ S }[/math] Background velocity shear [math]\displaystyle{ S = \left[ \left( \frac{\partial U}{\partial z}\right)^2 + \left( \frac{\partial V}{\partial z}\right)^2 \right]^{1/2} }[/math] [math]\displaystyle{ \mathrm{s^{-1}} }[/math]
[math]\displaystyle{ \nu_{35} }[/math] Temperature dependent kinematic viscosity of seawater at a practical salinity of 35 [math]\displaystyle{ \sim 1\times 10^{-6} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1} } }[/math]
[math]\displaystyle{ \nu_{00} }[/math] Temperature dependent kinematic viscosity of freshwater [math]\displaystyle{ \sim 1\times 10^{-6} }[/math] [math]\displaystyle{ \mathrm{m^2\, s^{-1} } }[/math]
[math]\displaystyle{ \Gamma_a }[/math] Adiabatic temperature gradient -- salinity, temperature and pressure dependent [math]\displaystyle{ \sim 1\times 10^{-4} }[/math] [math]\displaystyle{ \mathrm{K\, dbar^{-1} } }[/math]
[math]\displaystyle{ N }[/math] Background stratification, i.e buoyancy frequency [math]\displaystyle{ N^2 = g\left[ \alpha\left(\Gamma_a + \frac{\partial T}{\partial z} \right) - \beta \frac{\partial S_P}{\partial z} \right] }[/math] [math]\displaystyle{ \mathrm{rad\, s^{-1} } }[/math]

Theoretical Length and Time Scales

Symbol Description Eqn Units
[math]\displaystyle{ \tau_N }[/math] Buoyancy timescale [math]\displaystyle{ \tau_N = \frac{1}{N} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ T_N }[/math] Buoyancy period [math]\displaystyle{ T_N = \frac{2\pi}{N} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ L_E }[/math] Ellison length scale (limit of vertical displacement without irreversible mixing) [math]\displaystyle{ L_E=\frac {\langle \rho'^2\rangle^{1/2}}{\partial \overline{\rho}/\partial z} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_Z }[/math] Boundary (law of the wall) length scale [math]\displaystyle{ L_Z=0.39z_w }[/math] with 0.39 being von Kármán's constant [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_S }[/math] Corssin length scale [math]\displaystyle{ L_S = \sqrt{\varepsilon/S^3} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_K }[/math] Kolmogorov length scale (smallest overturns) [math]\displaystyle{ L_K=\left(\frac{\nu^3}{\varepsilon}\right)^{1/4} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_o }[/math] Ozmidov length scale, measure of largest overturns in a stratified fluid [math]\displaystyle{ L_o=\left(\frac{\varepsilon}{N^3}\right)^{1/2} }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ L_T }[/math] Thorpe length scale [math]\displaystyle{ L_T }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ z_w }[/math] Distance from a boundary [math]\displaystyle{ z_w }[/math] [math]\displaystyle{ \mathrm{m} }[/math]

Turbulence Spectrum

These variables are used to express the Turbulence spectrum expected shapes.


Symbol Description Eqn Units
[math]\displaystyle{ \Delta t }[/math] Sampling interval [math]\displaystyle{ \frac{1}{f_s} }[/math] [math]\displaystyle{ \mathrm{s} }[/math]
[math]\displaystyle{ f_s }[/math] Sampling rate [math]\displaystyle{ f_s=\frac{1}{\Delta t} }[/math] [math]\displaystyle{ \mathrm{s^{-1}} }[/math]
[math]\displaystyle{ \Delta s }[/math] Sample spacing [math]\displaystyle{ \Delta s = U_P \Delta t }[/math] [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ \Delta l }[/math] Linear dimension of sampling volume (instrument dependent) [math]\displaystyle{ \mathrm{m} }[/math]
[math]\displaystyle{ f }[/math] Cyclic frequency [math]\displaystyle{ f=\frac{\omega}{2\pi} }[/math] [math]\displaystyle{ \mathrm{Hz} }[/math]
[math]\displaystyle{ \omega }[/math] Angular frequency [math]\displaystyle{ \omega = 2\pi f }[/math] [math]\displaystyle{ \mathrm{rad\, s^{-1}} }[/math]
[math]\displaystyle{ f_N }[/math] Nyquist frequency [math]\displaystyle{ f_N=0.5f_s }[/math] [math]\displaystyle{ \mathrm{Hz} }[/math]
[math]\displaystyle{ k }[/math] Cyclic wavenumber [math]\displaystyle{ k=\frac{f}{U_P} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ \hat{k} }[/math] Angular wavenumber [math]\displaystyle{ \hat{k}=\frac{\omega}{U_P} = 2\pi k }[/math] [math]\displaystyle{ \mathrm{rad\, m^{-1}} }[/math]
[math]\displaystyle{ \tilde{k} }[/math] Normalized wavenumber e.g., [math]\displaystyle{ \tilde{k}=k L_K, L_K = \left(\nu^3/\varepsilon \right)^{1/4} }[/math] -
[math]\displaystyle{ \tilde{\Phi} }[/math] Normalized velocity spectrum e.g., [math]\displaystyle{ \tilde{\Phi}_u(\tilde{k}) = \left(\epsilon \nu^5\right)^{-1/4} \Phi_u(k) }[/math] -
[math]\displaystyle{ \tilde{\Psi} }[/math] Normalized shear spectrum e.g., [math]\displaystyle{ \tilde{\Psi}(\tilde{k}) = L_K^2 \left(\epsilon \nu^5\right)^{-1/4} \Psi(k) }[/math] -
[math]\displaystyle{ k_\Delta }[/math] Nyquist wavenumber, based on sampling volume size [math]\displaystyle{ \Delta l }[/math] [math]\displaystyle{ k_\Delta=\frac{0.5}{\Delta l} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ k_N }[/math] Nyquist wavenumber, via Taylor's hypothesis [math]\displaystyle{ k_N=\frac{f_N}{U_P} }[/math] [math]\displaystyle{ \mathrm{cpm} }[/math]
[math]\displaystyle{ \Psi(k) }[/math] Shear spectrum. Use [math]\displaystyle{ \Psi_1 }[/math], [math]\displaystyle{ \Psi_2 }[/math] to distinguish the orthogonal components of the shear. Use [math]\displaystyle{ \Psi_N }[/math] for the Nasmyth spectrum, [math]\displaystyle{ \Psi_{PK} }[/math] for the Panchev-Kesich spectrum and [math]\displaystyle{ \Psi_L }[/math] for the Lueck spectrum. [math]\displaystyle{ \mathrm{s^{-2}\, cpm^{-1}} }[/math]
[math]\displaystyle{ \Phi(k) }[/math] Velocity spectrum. Use [math]\displaystyle{ \Phi_u }[/math], [math]\displaystyle{ \Phi_v }[/math], [math]\displaystyle{ \Phi_v }[/math], or [math]\displaystyle{ \Phi_1 }[/math], [math]\displaystyle{ \Phi_2 }[/math] , [math]\displaystyle{ \Phi_3 }[/math] for the different orthogonal components of the velocity. Use [math]\displaystyle{ \Phi_K }[/math] for the Kolmogorov spectrum. [math]\displaystyle{ \mathrm{m^2\, s^{-2}\, cpm^{-1}} }[/math]